Combinatorial Development of Biomaterials for Clonal Growth of Human Pluripotent Stem Cells

July 3, 2012

Bibliographic Details
Main Authors: Mei, Ying (Contributor), Saha, Krishanu (Author), Bogatyrev, Said R. (Contributor), Yang, Jing (Author), Hook, Andrew L. (Author), Kalcioglu, Zeynep Ilke (Contributor), Cho, Seung Woo (Contributor), Mitalipova, Maisam (Author), Pyzocha, Neena (Contributor), Rojas, Fredrick P. (Contributor), Van Vliet, Krystyn J. (Contributor), Davies, Martyn C. (Author), Alexander, Morgan R. (Author), Langer, Robert (Contributor), Jaenisch, Rudolf (Contributor), Anderson, Daniel G. (Contributor)
Other Authors: Harvard University- (Contributor), Massachusetts Institute of Technology. Department of Biology (Contributor), Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2012-10-15T17:52:31Z.
Subjects:
Online Access:Get fulltext
LEADER 03597 am a22005773u 4500
001 73981
042 |a dc 
100 1 0 |a Mei, Ying  |e author 
100 1 0 |a Harvard University-  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
100 1 0 |a Mei, Ying  |e contributor 
100 1 0 |a Bogatyrev, Said R.  |e contributor 
100 1 0 |a Kalcioglu, Zeynep Ilke  |e contributor 
100 1 0 |a Cho, Seung Woo  |e contributor 
100 1 0 |a Pyzocha, Neena  |e contributor 
100 1 0 |a Rojas, Fredrick P.  |e contributor 
100 1 0 |a Van Vliet, Krystyn J.  |e contributor 
100 1 0 |a Langer, Robert  |e contributor 
100 1 0 |a Jaenisch, Rudolf  |e contributor 
100 1 0 |a Anderson, Daniel G.  |e contributor 
700 1 0 |a Saha, Krishanu  |e author 
700 1 0 |a Bogatyrev, Said R.  |e author 
700 1 0 |a Yang, Jing  |e author 
700 1 0 |a Hook, Andrew L.  |e author 
700 1 0 |a Kalcioglu, Zeynep Ilke  |e author 
700 1 0 |a Cho, Seung Woo  |e author 
700 1 0 |a Mitalipova, Maisam  |e author 
700 1 0 |a Pyzocha, Neena  |e author 
700 1 0 |a Rojas, Fredrick P.  |e author 
700 1 0 |a Van Vliet, Krystyn J.  |e author 
700 1 0 |a Davies, Martyn C.  |e author 
700 1 0 |a Alexander, Morgan R.  |e author 
700 1 0 |a Langer, Robert  |e author 
700 1 0 |a Jaenisch, Rudolf  |e author 
700 1 0 |a Anderson, Daniel G.  |e author 
245 0 0 |a Combinatorial Development of Biomaterials for Clonal Growth of Human Pluripotent Stem Cells 
260 |b Nature Publishing Group,   |c 2012-10-15T17:52:31Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/73981 
520 |a July 3, 2012 
520 |a Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined, xeno-free, feeder-free synthetic substrates to support robust self-renewal of fully dissociated human embryonic stem and induced pluripotent stem cells. Material properties including wettability, surface topography, surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure-function relationships between material properties and biological performance. These analyses show that optimal human embryonic stem cell substrates are generated from monomers with high acrylate content, have a moderate wettability and employ integrin α[subscript v]β[subscript 3] and α[subscript v]β[subscript 5] engagement with adsorbed vitronectin to promote colony formation. The structure-function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture. 
520 |a National Institutes of Health (U.S.) (Grant R37-CA084198) 
520 |a National Institutes of Health (U.S.) (Grant RO1-CA087869) 
520 |a National Institutes of Health (U.S.) (Grant RO1-HD045022) 
520 |a National Institutes of Health (U.S.) (Grant DE016516) 
520 |a Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D-0004) 
546 |a en_US 
655 7 |a Article 
773 |t Nature Materials