Emergence of superlattice Dirac points in graphene on hexagonal boron nitride

The Schrödinger equation dictates that the propagation of nearly free electrons through a weak periodic potential results in the opening of bandgaps near points of the reciprocal lattice known as Brillouin zone boundaries1. However, in the case of massless Dirac fermions, it has been predicted that...

Full description

Bibliographic Details
Main Authors: Yankowitz, Matthew (Author), Xue, Jiamin (Author), Cormode, Daniel (Author), Sanchez-Yamagishi, Javier (Contributor), Watanabe, K. (Author), Taniguchi, T. (Author), Jarillo-Herrero, Pablo (Contributor), Jacquod, Philippe (Author), LeRoy, Brian J. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2013-01-23T16:52:31Z.
Subjects:
Online Access:Get fulltext
LEADER 02841 am a22003733u 4500
001 76349
042 |a dc 
100 1 0 |a Yankowitz, Matthew  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Sanchez-Yamagishi, Javier  |e contributor 
100 1 0 |a Jarillo-Herrero, Pablo  |e contributor 
700 1 0 |a Xue, Jiamin  |e author 
700 1 0 |a Cormode, Daniel  |e author 
700 1 0 |a Sanchez-Yamagishi, Javier  |e author 
700 1 0 |a Watanabe, K.  |e author 
700 1 0 |a Taniguchi, T.  |e author 
700 1 0 |a Jarillo-Herrero, Pablo  |e author 
700 1 0 |a Jacquod, Philippe  |e author 
700 1 0 |a LeRoy, Brian J.  |e author 
245 0 0 |a Emergence of superlattice Dirac points in graphene on hexagonal boron nitride 
260 |b Nature Publishing Group,   |c 2013-01-23T16:52:31Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/76349 
520 |a The Schrödinger equation dictates that the propagation of nearly free electrons through a weak periodic potential results in the opening of bandgaps near points of the reciprocal lattice known as Brillouin zone boundaries1. However, in the case of massless Dirac fermions, it has been predicted that the chirality of the charge carriers prevents the opening of a bandgap and instead new Dirac points appear in the electronic structure of the material. Graphene on hexagonal boron nitride exhibits a rotation-dependent moiré pattern. Here, we show experimentally and theoretically that this moiré pattern acts as a weak periodic potential and thereby leads to the emergence of a new set of Dirac points at an energy determined by its wavelength. The new massless Dirac fermions generated at these superlattice Dirac points are characterized by a significantly reduced Fermi velocity. Furthermore, the local density of states near these Dirac cones exhibits hexagonal modulation due to the influence of the periodic potential. 
520 |a U.S. Army Research Laboratory (contract/grant number W911NF-09-1-0333) 
520 |a United States. Army Research Office (contract/grant number W911NF-09-1-0333) 
520 |a National Science Foundation (U.S.) (award DMR-0706319) 
520 |a National Science Foundation (U.S.) (CAREER award EECS-0925152) 
520 |a National Science Foundation (U.S.) (CAREER award DMR-0953784) 
520 |a United States. Dept. of Energy (Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0001819) 
520 |a United States. Office of Naval Research (Multi University Research Initiative (MURI) on Graphene Advanced Terahertz Engineering (Gate) at MIT, Harvard and Boston Unversity, 2009) 
520 |a Swiss National Science Foundation (MaNEP (Materials with novel electronic properties)) 
546 |a en_US 
655 7 |a Article 
773 |t Nature Physics