Material dependence of Casimir forces: Gradient expansion beyond proximity

A widely used method for estimating Casimir interactions [H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between gently curved material surfaces at short distances is the proximity force approximation (PFA). While this approximation is asymptotically exact at vanishing separations, quant...

Full description

Bibliographic Details
Main Authors: Bimonte, Giuseppe (Author), Emig, Thorsten (Author), Kardar, Mehran (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Institute of Physics (AIP), 2013-01-25T19:19:16Z.
Subjects:
Online Access:Get fulltext
LEADER 01549 am a22002053u 4500
001 76612
042 |a dc 
100 1 0 |a Bimonte, Giuseppe  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Kardar, Mehran  |e contributor 
700 1 0 |a Emig, Thorsten  |e author 
700 1 0 |a Kardar, Mehran  |e author 
245 0 0 |a Material dependence of Casimir forces: Gradient expansion beyond proximity 
260 |b American Institute of Physics (AIP),   |c 2013-01-25T19:19:16Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/76612 
520 |a A widely used method for estimating Casimir interactions [H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between gently curved material surfaces at short distances is the proximity force approximation (PFA). While this approximation is asymptotically exact at vanishing separations, quantifying corrections to PFA has been notoriously difficult. Here, we use a derivative expansion to compute the leading curvature correction to PFA for metals (gold) at room temperature. We derive an explicit expression for the amplitude math[subscript 1] of the PFA correction to the force gradient for axially symmetric surfaces. In the non-retarded limit, the corrections to the Casimir free energy are found to scale logarithmically with distance. For gold, math[subscript 1] has an unusually large temperature dependence. 
520 |a National Science Foundation (U.S.) (Grant DMR- 08-03315) 
546 |a en_US 
655 7 |a Article 
773 |t Applied Physics Letters