Enabling single-mode behavior over large areas with photonic Dirac cones

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207335109/-/DCSupplemental

Bibliographic Details
Main Authors: Bravo-Abad, Jorge (Author), Joannopoulos, John D. (Contributor), Soljacic, Marin (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: National Academy of Sciences (U.S.), 2013-02-06T16:57:14Z.
Subjects:
Online Access:Get fulltext
LEADER 02582 am a22002653u 4500
001 76750
042 |a dc 
100 1 0 |a Bravo-Abad, Jorge  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Joannopoulos, John D.  |e contributor 
100 1 0 |a Soljacic, Marin  |e contributor 
700 1 0 |a Joannopoulos, John D.  |e author 
700 1 0 |a Soljacic, Marin  |e author 
245 0 0 |a Enabling single-mode behavior over large areas with photonic Dirac cones 
260 |b National Academy of Sciences (U.S.),   |c 2013-02-06T16:57:14Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/76750 
520 |a This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207335109/-/DCSupplemental 
520 |a Many of graphene's unique electronic properties emerge from its Dirac-like electronic energy spectrum. Similarly, it is expected that a nanophotonic system featuring Dirac dispersion (two conical bands touching at a single point, the so-called Dirac point) will open a path to a number of important research avenues. To date, however, all proposed realizations of a photonic analog of graphene lack fully omnidirectional out-of-plane light confinement, which has prevented creating truly realistic implementations of this class of systems able to mimic the two-dimensional transport properties of graphene. Here we report on a novel route to achieve all-dielectric three-dimensional photonic materials featuring Dirac-like dispersion in a quasi-two-dimensional system. We further discuss how this finding could enable a dramatic enhancement of the spontaneous emission coupling efficiency (the β-factor) over large areas, defying the common wisdom that the β-factor degrades rapidly as the size of the system increases. These results might enable general new classes of large-area ultralow-threshold lasers, single-photon sources, quantum information processing devices and energy harvesting systems. 
520 |a National Science Foundation (U.S.) (Materials Research Science and Engineering Centers Program, award DMR-0819762) 
520 |a United States. Dept. of Energy (MIT S3TEC Energy Research Frontier Center, Grant DE-SC0001299) 
520 |a United States. Army Research Office (Institute for Soldier Nanotechnologies, under contract W911NF-07-D0004) 
520 |a Spain. Ministerio de Ciencia e Innovacion (Ramon-y-Cajal program, Grant RyC-2009-05489) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the National Academy of Sciences of the United States of America