Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results

A formulation of the generalized minimal output entropy conjecture for Gaussian channels is presented. It asserts that, for states with fixed input entropy, the minimal value of the output entropy of the channel (i.e. the minimal output entropy increment for fixed input entropy) is achieved by Gauss...

Full description

Bibliographic Details
Main Authors: Giovannetti, Vittorio (Author), Holevo, A. S. (Author), Maccone, Lorenzo (Contributor), Lloyd, Seth (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: IOP Publishing, 2013-06-05T20:47:25Z.
Subjects:
Online Access:Get fulltext
LEADER 01433 am a22002293u 4500
001 79065
042 |a dc 
100 1 0 |a Giovannetti, Vittorio  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Lloyd, Seth  |e contributor 
100 1 0 |a Maccone, Lorenzo  |e contributor 
700 1 0 |a Holevo, A. S.  |e author 
700 1 0 |a Maccone, Lorenzo  |e author 
700 1 0 |a Lloyd, Seth  |e author 
245 0 0 |a Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results 
260 |b IOP Publishing,   |c 2013-06-05T20:47:25Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/79065 
520 |a A formulation of the generalized minimal output entropy conjecture for Gaussian channels is presented. It asserts that, for states with fixed input entropy, the minimal value of the output entropy of the channel (i.e. the minimal output entropy increment for fixed input entropy) is achieved by Gaussian states. In the case of centered channels (i.e. channels which do not add squeezing to the input state) this implies that the minimum is obtained by thermal (Gibbs) inputs. The conjecture is proved to be valid in some special cases. 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Physics A Mathematical and Theoretical