Chemical Characterization of the Smallest S-Nitrosothiol, HSNO; Cellular Cross-talk of H₂S and S-Nitrosothiols

Dihydrogen sulfide recently emerged as a biological signaling molecule with important physiological roles and significant pharmacological potential. Chemically plausible explanations for its mechanisms of action have remained elusive, however. Here, we report that H2S reacts with S-nitrosothiols to...

Full description

Bibliographic Details
Main Authors: Filipovic, Milos R. (Author), Miljkovic, Jan Lj (Author), Nauser, Thomas (Author), Royzen, Maksim (Contributor), Klos, Katharina (Author), Shubina, Tatyana (Author), Koppenol, Willem H. (Author), Lippard, Stephen J. (Contributor), Ivanović-Burmazović, Ivana (Author)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: American Chemical Society, 2013-06-06T20:17:11Z.
Subjects:
Online Access:Get fulltext
LEADER 02195 am a22003133u 4500
001 79076
042 |a dc 
100 1 0 |a Filipovic, Milos R.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Lippard, Stephen J.  |e contributor 
100 1 0 |a Royzen, Maksim  |e contributor 
700 1 0 |a Miljkovic, Jan Lj.  |e author 
700 1 0 |a Nauser, Thomas  |e author 
700 1 0 |a Royzen, Maksim  |e author 
700 1 0 |a Klos, Katharina  |e author 
700 1 0 |a Shubina, Tatyana  |e author 
700 1 0 |a Koppenol, Willem H.  |e author 
700 1 0 |a Lippard, Stephen J.  |e author 
700 1 0 |a Ivanović-Burmazović, Ivana  |e author 
245 0 0 |a Chemical Characterization of the Smallest S-Nitrosothiol, HSNO; Cellular Cross-talk of H₂S and S-Nitrosothiols 
260 |b American Chemical Society,   |c 2013-06-06T20:17:11Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/79076 
520 |a Dihydrogen sulfide recently emerged as a biological signaling molecule with important physiological roles and significant pharmacological potential. Chemically plausible explanations for its mechanisms of action have remained elusive, however. Here, we report that H2S reacts with S-nitrosothiols to form thionitrous acid (HSNO), the smallest S-nitrosothiol. These results demonstrate that, at the cellular level, HSNO can be metabolized to afford NO+, NO, and NO- species, all of which have distinct physiological consequences of their own. We further show that HSNO can freely diffuse through membranes, facilitating transnitrosation of proteins such as hemoglobin. The data presented in this study explain some of the physiological effects ascribed to H2S, but, more broadly, introduce a new signaling molecule, HSNO, and suggest that it may play a key role in cellular redox regulation. 
520 |a Friedrich-Alexander-Universität Erlangen-Nürnberg (Intermural grant from Emerging Field Initiative: Medicinal Redox Inorganic Chemistry) 
520 |a National Science Foundation (U.S.) 
520 |a National Institutes of Health (U.S.) (Postdoctoral Fellowship) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of the American Chemical Society