Beyond parallax barriers: applying formal optimization methods to multilayer automultiscopic displays

This paper focuses on resolving long-standing limitations of parallax barriers by applying formal optimization methods. We consider two generalizations of conventional parallax barriers. First, we consider general two-layer architectures, supporting high-speed temporal variation with arbitrary opaci...

Full description

Bibliographic Details
Main Authors: Lanman, Douglas R. (Contributor), Wetzstein, Gordon (Contributor), Heidrich, Wolfgang (Author), Raskar, Ramesh (Contributor), Hirsch, Matthew Waggener (Contributor)
Other Authors: Massachusetts Institute of Technology. Media Laboratory (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: SPIE, 2013-09-12T15:11:46Z.
Subjects:
Online Access:Get fulltext
LEADER 02998 am a22003493u 4500
001 80412
042 |a dc 
100 1 0 |a Lanman, Douglas R.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Lanman, Douglas R.  |e contributor 
100 1 0 |a Wetzstein, Gordon  |e contributor 
100 1 0 |a Hirsch, Matthew Waggener  |e contributor 
100 1 0 |a Raskar, Ramesh  |e contributor 
700 1 0 |a Wetzstein, Gordon  |e author 
700 1 0 |a Heidrich, Wolfgang  |e author 
700 1 0 |a Raskar, Ramesh  |e author 
700 1 0 |a Hirsch, Matthew Waggener  |e author 
245 0 0 |a Beyond parallax barriers: applying formal optimization methods to multilayer automultiscopic displays 
260 |b SPIE,   |c 2013-09-12T15:11:46Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/80412 
520 |a This paper focuses on resolving long-standing limitations of parallax barriers by applying formal optimization methods. We consider two generalizations of conventional parallax barriers. First, we consider general two-layer architectures, supporting high-speed temporal variation with arbitrary opacities on each layer. Second, we consider general multi-layer architectures containing three or more light-attenuating layers. This line of research has led to two new attenuation-based displays. The High-Rank 3D (HR3D) display contains a stacked pair of LCD panels; rather than using heuristically-defined parallax barriers, both layers are jointly-optimized using low-rank light field factorization, resulting in increased brightness, refresh rate, and battery life for mobile applications. The Layered 3D display extends this approach to multi-layered displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field when illuminated by a uniform backlight. We further introduce Polarization Fields as an optically-efficient and computationally efficient extension of Layered 3D to multi-layer LCDs. Together, these projects reveal new generalizations to parallax barrier concepts, enabled by the application of formal optimization methods to multi-layer attenuation-based designs in a manner that uniquely leverages the compressive nature of 3D scenes for display applications. 
520 |a Massachusetts Institute of Technology. Media Laboratory 
520 |a National Science Foundation (U.S.) (Grant IIS-1116452) 
520 |a United States. Defense Advanced Research Projects Agency (Grant HR0011-10-C-0073) 
520 |a Alfred P. Sloan Foundation (Research Fellowship) 
520 |a United States. Defense Advanced Research Projects Agency (Young Faculty Award) 
520 |a MIT Camera Culture Group 
520 |a UBC Imager Laboratory 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of SPIE--the International Society for Optical Engineering; v. 8288