Charge transport by holographic Fermi surfaces

We compute the contribution to the conductivity from holographic Fermi surfaces obtained from probe fermions in an AdS charged black hole. This requires calculating a certain part of the one-loop correction to a vector propagator on the charged black hole geometry. We find that the current dissipati...

Full description

Bibliographic Details
Main Authors: Faulkner, Thomas (Author), Iqbal, Nabil (Author), Liu, Hong (Contributor), McGreevy, John (Author), Vegh, David (Author)
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2013-10-15T14:50:34Z.
Subjects:
Online Access:Get fulltext
LEADER 01966 am a22003253u 4500
001 81381
042 |a dc 
100 1 0 |a Faulkner, Thomas  |e author 
100 1 0 |a Massachusetts Institute of Technology. Center for Theoretical Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Liu, Hong  |e contributor 
700 1 0 |a Iqbal, Nabil  |e author 
700 1 0 |a Liu, Hong  |e author 
700 1 0 |a McGreevy, John  |e author 
700 1 0 |a Vegh, David  |e author 
245 0 0 |a Charge transport by holographic Fermi surfaces 
260 |b American Physical Society,   |c 2013-10-15T14:50:34Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/81381 
520 |a We compute the contribution to the conductivity from holographic Fermi surfaces obtained from probe fermions in an AdS charged black hole. This requires calculating a certain part of the one-loop correction to a vector propagator on the charged black hole geometry. We find that the current dissipation is as efficient as possible and the transport lifetime coincides with the single-particle lifetime. In particular, in the case where the spectral density is that of a marginal Fermi liquid, the resistivity is linear in temperature. 
520 |a United States. Dept. of Energy (Cooperative Research Agreement DE-FG0205ER41360) 
520 |a United States. Dept. of Energy (Cooperative Research Agreement DE-FG02-92ER40697) 
520 |a United States. Dept. of Energy (Cooperative Research Agreement DE-FG0205ER41360) 
520 |a United States. Dept. of Energy (Cooperative Research Agreement DE-SC0009919) 
520 |a United States. Dept. of Energy. Outstanding Junior Investigator Program 
520 |a Alfred P. Sloan Foundation 
520 |a National Science Foundation (U.S.) (Grant NSF PHY05-51164) 
520 |a National Science Foundation (U.S.) (Grant PHY11-25915) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review D