Recognition of Sleep Dependent Memory Consolidation with Multi-modal Sensor Data

This paper presents the possibility of recognizing sleep dependent memory consolidation using multi-modal sensor data. We collected visual discrimination task (VDT) performance before and after sleep at laboratory, hospital and home for N=24 participants while recording EEG (electroencepharogram), E...

Full description

Bibliographic Details
Main Authors: Sano, Akane (Contributor), Picard, Rosalind W. (Contributor)
Other Authors: Massachusetts Institute of Technology. Media Laboratory (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2013-10-30T15:21:05Z.
Subjects:
Online Access:Get fulltext
LEADER 01818 am a22002053u 4500
001 81876
042 |a dc 
100 1 0 |a Sano, Akane  |e author 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Picard, Rosalind W.  |e contributor 
100 1 0 |a Sano, Akane  |e contributor 
700 1 0 |a Picard, Rosalind W.  |e author 
245 0 0 |a Recognition of Sleep Dependent Memory Consolidation with Multi-modal Sensor Data 
260 |b Institute of Electrical and Electronics Engineers,   |c 2013-10-30T15:21:05Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/81876 
520 |a This paper presents the possibility of recognizing sleep dependent memory consolidation using multi-modal sensor data. We collected visual discrimination task (VDT) performance before and after sleep at laboratory, hospital and home for N=24 participants while recording EEG (electroencepharogram), EDA (electrodermal activity) and ACC (accelerometer) or actigraphy data during sleep. We extracted features and applied machine learning techniques (discriminant analysis, support vector machine and k-nearest neighbor) from the sleep data to classify whether the participants showed improvement in the memory task. Our results showed 60-70% accuracy in a binary classification of task performance using EDA or EDA+ACC features, which provided an improvement over the more traditional use of sleep stages (the percentages of slow wave sleep (SWS) in the 1st quarter and rapid eye movement (REM) in the 4th quarter of the night) to predict VDT improvement. 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the 2013 IEEE International Conference on Body Sensor Networks