Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclero...

Full description

Bibliographic Details
Main Authors: Giantsos-Adams, Kristina M. (Contributor), Koo, Andrew Jia-An (Contributor), Song, Sukhyun (Author), Sakai, Jiro (Contributor), Sankaran, Jagadish (Author), Shin, Jennifer H. (Author), Garcia-Cardena, Guillermo (Author), Dewey, C. Forbes (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2013-12-02T19:52:33Z.
Subjects:
Online Access:Get fulltext
LEADER 02559 am a22003253u 4500
001 82626
042 |a dc 
100 1 0 |a Giantsos-Adams, Kristina M.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Giantsos-Adams, Kristina M.  |e contributor 
100 1 0 |a Koo, Andrew Jia-An  |e contributor 
100 1 0 |a Sakai, Jiro  |e contributor 
100 1 0 |a Dewey, C. Forbes  |e contributor 
700 1 0 |a Koo, Andrew Jia-An  |e author 
700 1 0 |a Song, Sukhyun  |e author 
700 1 0 |a Sakai, Jiro  |e author 
700 1 0 |a Sankaran, Jagadish  |e author 
700 1 0 |a Shin, Jennifer H.  |e author 
700 1 0 |a Garcia-Cardena, Guillermo  |e author 
700 1 0 |a Dewey, C. Forbes  |e author 
245 0 0 |a Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation 
260 |b Springer-Verlag,   |c 2013-12-02T19:52:33Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/82626 
520 |a The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells' ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover. 
520 |a National Heart, Lung, and Blood Institute (Grant HL090856-01) 
520 |a Singapore-MIT Alliance 
546 |a en_US 
655 7 |a Article 
773 |t Cellular and Molecular Bioengineering