Mechanisms of protein-folding diseases at a glance

For a protein to function appropriately, it must first achieve its proper conformation and location within the crowded environment inside the cell. Multiple chaperone systems are required to fold proteins correctly. In addition, degradation pathways participate by destroying improperly folded protei...

Full description

Bibliographic Details
Main Authors: Valastyan, Julie Suzanne (Contributor), Lindquist, Susan (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biology (Contributor), Whitehead Institute for Biomedical Research (Contributor)
Format: Article
Language:English
Published: Company of Biologists, 2014-02-07T18:40:49Z.
Subjects:
Online Access:Get fulltext
Description
Summary:For a protein to function appropriately, it must first achieve its proper conformation and location within the crowded environment inside the cell. Multiple chaperone systems are required to fold proteins correctly. In addition, degradation pathways participate by destroying improperly folded proteins. The intricacy of this multisystem process provides many opportunities for error. Furthermore, mutations cause misfolded, nonfunctional forms of proteins to accumulate. As a result, many pathological conditions are fundamentally rooted in the protein-folding problem that all cells must solve to maintain their function and integrity. Here, to illustrate the breadth of this phenomenon, we describe five examples of protein-misfolding events that can lead to disease: improper degradation, mislocalization, dominant-negative mutations, structural alterations that establish novel toxic functions, and amyloid accumulation. In each case, we will highlight current therapeutic options for battling such diseases.
Howard Hughes Medical Institute (Investigator)
JPB Foundation
Eleanor Schwartz Charitable Foundation