Interacting fermionic topological insulators/superconductors in three dimensions

Symmetry protected topological (SPT) phases are a minimal generalization of the concept of topological insulators to interacting systems. In this paper, we describe the classification and properties of such phases for three-dimensional (3D) electronic systems with a number of different symmetries. F...

Full description

Bibliographic Details
Main Authors: Wang, Chong (Contributor), Todadri, Senthil (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2014-08-08T17:48:35Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Symmetry protected topological (SPT) phases are a minimal generalization of the concept of topological insulators to interacting systems. In this paper, we describe the classification and properties of such phases for three-dimensional (3D) electronic systems with a number of different symmetries. For symmetries representative of all classes in the famous 10-fold way of free-fermion topological insulators/superconductors, we determine the stability to interactions. By combining with results on bosonic SPT phases, we obtain a classification of electronic 3D SPT phases for these symmetries. In cases with a normal U(1) subgroup we show that this classification is complete. We describe the nontrivial surface and bulk properties of these states. In particular, we discuss interesting correlated surface states that are not captured in a free-fermion description. We show that in many, but not all, cases, the surface can be gapped while preserving symmetry if it develops intrinsic topological order.
National Science Foundation (U.S.) (Grant DMR-1305741)
Simons Foundation