Weighing nanoparticles in solution at the attogram scale

Physical characterization of nanoparticles is required for a wide range of applications. Nanomechanical resonators can quantify the mass of individual particles with detection limits down to a single atom in vacuum. However, applications are limited because performance is severely degraded in soluti...

Full description

Bibliographic Details
Main Authors: Olcum, Selim (Contributor), Cermak, Nathan (Contributor), Wasserman, Steven Charles (Contributor), Christine, Kathleen (Contributor), Atsumi, Hiroshi (Contributor), Payer, Kristofor Robert (Contributor), Shen, Wenjiang (Author), Lee, Jungchul (Author), Belcher, Angela M. (Contributor), Bhatia, Sangeeta N. (Contributor), Manalis, Scott R. (Contributor)
Other Authors: Massachusetts Institute of Technology. Institute for Medical Engineering & Science (Contributor), Harvard University- (Contributor), Massachusetts Institute of Technology. Computational and Systems Biology Program (Contributor), Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Microsystems Technology Laboratories (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor)
Format: Article
Language:English
Published: National Academy of Sciences (U.S.), 2014-09-02T13:31:55Z.
Subjects:
Online Access:Get fulltext
LEADER 03578 am a22005173u 4500
001 89121
042 |a dc 
100 1 0 |a Olcum, Selim  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Medical Engineering & Science  |e contributor 
100 1 0 |a Harvard University-  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Computational and Systems Biology Program  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Microsystems Technology Laboratories  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
100 1 0 |a Olcum, Selim  |e contributor 
100 1 0 |a Cermak, Nathan  |e contributor 
100 1 0 |a Wasserman, Steven Charles  |e contributor 
100 1 0 |a Christine, Kathleen  |e contributor 
100 1 0 |a Atsumi, Hiroshi  |e contributor 
100 1 0 |a Payer, Kristofor Robert  |e contributor 
100 1 0 |a Belcher, Angela M.  |e contributor 
100 1 0 |a Bhatia, Sangeeta N.  |e contributor 
100 1 0 |a Manalis, Scott R.  |e contributor 
700 1 0 |a Cermak, Nathan  |e author 
700 1 0 |a Wasserman, Steven Charles  |e author 
700 1 0 |a Christine, Kathleen  |e author 
700 1 0 |a Atsumi, Hiroshi  |e author 
700 1 0 |a Payer, Kristofor Robert  |e author 
700 1 0 |a Shen, Wenjiang  |e author 
700 1 0 |a Lee, Jungchul  |e author 
700 1 0 |a Belcher, Angela M.  |e author 
700 1 0 |a Bhatia, Sangeeta N.  |e author 
700 1 0 |a Manalis, Scott R.  |e author 
245 0 0 |a Weighing nanoparticles in solution at the attogram scale 
260 |b National Academy of Sciences (U.S.),   |c 2014-09-02T13:31:55Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/89121 
520 |a Physical characterization of nanoparticles is required for a wide range of applications. Nanomechanical resonators can quantify the mass of individual particles with detection limits down to a single atom in vacuum. However, applications are limited because performance is severely degraded in solution. Suspended micro- and nanochannel resonators have opened up the possibility of achieving vacuum-level precision for samples in the aqueous environment and a noise equivalent mass resolution of 27 attograms in 1-kHz bandwidth was previously achieved by Lee et al. [(2010) Nano Lett 10(7):2537-2542]. Here, we report on a series of advancements that have improved the resolution by more than 30-fold, to 0.85 attograms in the same bandwidth, approaching the thermomechanical noise limit and enabling precise quantification of particles down to 10 nm with a throughput of more than 18,000 particles per hour. We demonstrate the potential of this capability by comparing the mass distributions of exosomes produced by different cell types and by characterizing the yield of self-assembled DNA nanoparticle structures. 
520 |a Institute for Collaborative Biotechnologies (Contract W911NF-09-D-0001) 
520 |a United States. Army Research Office (Center for Integration of Medicine and Innovative Technology Contract 09-440) 
520 |a National Science Foundation (U.S.) (Grant 1129359) 
520 |a National Cancer Institute (U.S.) (Grant P30-CA14051) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the National Academy of Sciences