Unifying perception, estimation and action for mobile manipulation via belief space planning

In this paper, we describe an integrated strategy for planning, perception, state-estimation and action in complex mobile manipulation domains. The strategy is based on planning in the belief space of probability distribution over states. Our planning approach is based on hierarchical symbolic regre...

Full description

Bibliographic Details
Main Authors: Lozano-Perez, Tomas (Contributor), Kaelbling, Leslie P. (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2014-09-22T18:43:31Z.
Subjects:
Online Access:Get fulltext
LEADER 01809 am a22002413u 4500
001 90270
042 |a dc 
100 1 0 |a Lozano-Perez, Tomas  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Kaelbling, Leslie P.  |e contributor 
100 1 0 |a Lozano-Perez, Tomas  |e contributor 
700 1 0 |a Kaelbling, Leslie P.  |e author 
245 0 0 |a Unifying perception, estimation and action for mobile manipulation via belief space planning 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2014-09-22T18:43:31Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/90270 
520 |a In this paper, we describe an integrated strategy for planning, perception, state-estimation and action in complex mobile manipulation domains. The strategy is based on planning in the belief space of probability distribution over states. Our planning approach is based on hierarchical symbolic regression (pre-image back-chaining). We develop a vocabulary of fluents that describe sets of belief states, which are goals and subgoals in the planning process. We show that a relatively small set of symbolic operators lead to task-oriented perception in support of the manipulation goals. 
520 |a National Science Foundation (U.S.) (Grant 019868) 
520 |a United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051) 
520 |a United States. Air Force Office of Scientific Research (Grant AOARD-104135) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the 2012 IEEE International Conference on Robotics and Automation