Interferometric Probes of Many-Body Localization

We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninterac...

Full description

Bibliographic Details
Main Authors: Serbyn, Maksym (Contributor), Knap, M. (Author), Gopalakrishnan, S. (Author), Papic, Z. (Author), Yao, N. Y (Author), Laumann, C. R (Author), Abanin, Dmitry A. (Author), Lukin, Mikhail D (Author), Demler, Eugene (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2014-10-09T16:39:06Z.
Subjects:
Online Access:Get fulltext
LEADER 02203 am a22003493u 4500
001 90831
042 |a dc 
100 1 0 |a Serbyn, Maksym  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Serbyn, Maksym  |e contributor 
700 1 0 |a Knap, M.  |e author 
700 1 0 |a Gopalakrishnan, S.  |e author 
700 1 0 |a Papic, Z.  |e author 
700 1 0 |a Yao, N. Y.  |e author 
700 1 0 |a Laumann, C. R.  |e author 
700 1 0 |a Abanin, Dmitry A.  |e author 
700 1 0 |a Lukin, Mikhail D.  |e author 
700 1 0 |a Demler, Eugene  |e author 
245 0 0 |a Interferometric Probes of Many-Body Localization 
260 |b American Physical Society,   |c 2014-10-09T16:39:06Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/90831 
520 |a We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems. 
520 |a Harvard Quantum Optics Center 
520 |a Harvard-MIT Center for Ultracold Atoms 
520 |a United States. Defense Advanced Research Projects Agency. Optical Lattice Emulator Program 
520 |a United States. Army Research Office. Multidisciplinary University Research Initiative. Atomtronics 
520 |a United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative. Quantum Simulation 
520 |a United States. Army Research Office. Multidisciplinary University Research Initiative. Quism 
520 |a Alfred P. Sloan Foundation 
546 |a en 
655 7 |a Article 
773 |t Physical Review Letters