Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform

Intracellular delivery of materials is a challenge in research and therapeutic applications. Physical methods of plasma membrane disruption have recently emerged as an approach to facilitate the delivery of a variety of macromolecules to a range of cell types. We use the microfluidic CellSqueeze del...

Full description

Bibliographic Details
Main Authors: Poceviciute, Roberta (Contributor), Jackson, Emily L. (Contributor), Cho, Nahyun (Contributor), Mao, Shirley (Contributor), Hartoularos, George C. (Contributor), Jang, Derek Y. (Contributor), Jhunjhunwala, Siddharth (Contributor), Schoettle, Taylor (Contributor), Sharei, Armon Reza (Contributor), Eyerman, Alexandra T. (Contributor), Langer, Robert S (Author), Jensen, Klavs F (Author)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor), Langer, Robert (Contributor), Jensen, Klavs F. (Contributor)
Format: Article
Language:English
Published: Royal Society of Chemistry, 2014-10-15T13:19:58Z.
Subjects:
Online Access:Get fulltext
LEADER 03340 am a22005173u 4500
001 90938
042 |a dc 
100 1 0 |a Poceviciute, Roberta  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
100 1 0 |a Sharei, Armon Reza  |e contributor 
100 1 0 |a Poceviciute, Roberta  |e contributor 
100 1 0 |a Jackson, Emily L.  |e contributor 
100 1 0 |a Cho, Nahyun  |e contributor 
100 1 0 |a Mao, Shirley  |e contributor 
100 1 0 |a Hartoularos, George C.  |e contributor 
100 1 0 |a Jang, Derek Y.  |e contributor 
100 1 0 |a Jhunjhunwala, Siddharth  |e contributor 
100 1 0 |a Eyerman, Alexandra T.  |e contributor 
100 1 0 |a Schoettle, Taylor  |e contributor 
100 1 0 |a Langer, Robert  |e contributor 
100 1 0 |a Jensen, Klavs F.  |e contributor 
700 1 0 |a Jackson, Emily L.  |e author 
700 1 0 |a Cho, Nahyun  |e author 
700 1 0 |a Mao, Shirley  |e author 
700 1 0 |a Hartoularos, George C.  |e author 
700 1 0 |a Jang, Derek Y.  |e author 
700 1 0 |a Jhunjhunwala, Siddharth  |e author 
700 1 0 |a Schoettle, Taylor  |e author 
700 1 0 |a Sharei, Armon Reza  |e author 
700 1 0 |a Eyerman, Alexandra T.  |e author 
700 1 0 |a Langer, Robert S  |e author 
700 1 0 |a Jensen, Klavs F  |e author 
245 0 0 |a Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform 
260 |b Royal Society of Chemistry,   |c 2014-10-15T13:19:58Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/90938 
520 |a Intracellular delivery of materials is a challenge in research and therapeutic applications. Physical methods of plasma membrane disruption have recently emerged as an approach to facilitate the delivery of a variety of macromolecules to a range of cell types. We use the microfluidic CellSqueeze delivery platform to examine the kinetics of plasma membrane recovery after disruption and its dependence on the calcium content of the surrounding buffer (recovery time ~5 min without calcium vs. ~30 s with calcium). Moreover, we illustrate that manipulation of the membrane repair kinetics can yield up to 5× improvement in delivery efficiency without significantly impacting cell viability. Membrane repair characteristics initially observed in HeLa cells are shown to translate to primary naïve murine T cells. Subsequent manipulation of membrane repair kinetics also enables the delivery of larger materials, such as antibodies, to these difficult to manipulate cells. This work provides insight into the membrane repair process in response to mechanical delivery and could potentially enable the development of improved delivery methods. 
520 |a National Institutes of Health (U.S.) (Grant RC1 EB011187-02) 
520 |a National Institutes of Health (U.S.) (Grant R01GN101420-01A1) 
520 |a Kathy and Curt Marble Cancer Research Fund 
520 |a National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051) 
520 |a National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant MPP-09Call-Langer-60) 
546 |a en_US 
655 7 |a Article 
773 |t Integrative Biology