Dark nuclei. II. Nuclear spectroscopy in two-color QCD

We consider two-color QCD with two flavors of quarks as a possible theory of composite dark matter and use lattice field theory methods to investigate nuclear spectroscopy in the spin J = 0 and J = 1 multibaryon sectors. We find compelling evidence that J = 1 systems with baryon number B = 2,3 (and...

Full description

Bibliographic Details
Main Authors: Detmold, William (Contributor), Pochinsky, Andrew (Contributor), McCullough, Matthew P. (Contributor)
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor), Massachusetts Institute of Technology. Laboratory for Nuclear Science (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2015-01-06T20:52:21Z.
Subjects:
Online Access:Get fulltext
LEADER 01801 am a22002893u 4500
001 92721
042 |a dc 
100 1 0 |a Detmold, William  |e author 
100 1 0 |a Massachusetts Institute of Technology. Center for Theoretical Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Nuclear Science  |e contributor 
100 1 0 |a Detmold, William  |e contributor 
100 1 0 |a McCullough, Matthew P.  |e contributor 
100 1 0 |a Pochinsky, Andrew  |e contributor 
700 1 0 |a Pochinsky, Andrew  |e author 
700 1 0 |a McCullough, Matthew P.  |e author 
245 0 0 |a Dark nuclei. II. Nuclear spectroscopy in two-color QCD 
260 |b American Physical Society,   |c 2015-01-06T20:52:21Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/92721 
520 |a We consider two-color QCD with two flavors of quarks as a possible theory of composite dark matter and use lattice field theory methods to investigate nuclear spectroscopy in the spin J = 0 and J = 1 multibaryon sectors. We find compelling evidence that J = 1 systems with baryon number B = 2,3 (and their mixed meson-baryon counterparts) are bound states-the analogues of nuclei in this theory. In addition, we estimate the σ-terms of the J = 0 and J = 1 single baryon states which are important for the coupling of the theory to scalar currents that may mediate interactions with the visible sector. 
520 |a Simons Foundation (Postdoctoral Fellowship) 
520 |a United States. Dept. of Energy (Early Career Research Award DE-SC0010495) 
520 |a Solomon Buchsbaum AT&T Research Fund 
520 |a United States. Dept. of Energy (Grant DE-FG02-94ER40818) 
546 |a en 
655 7 |a Article 
773 |t Physical Review D