Microscopic Realization of Two-Dimensional Bosonic Topological Insulators

It is well known that a bosonic Mott insulator can be realized by condensing vortices of a boson condensate. Usually, a vortex becomes an antivortex (and vice versa) under time reversal symmetry, and the condensation of vortices results in a trivial Mott insulator. However, if each vortex or antivor...

Full description

Bibliographic Details
Main Authors: Liu, Zheng-Xin (Author), Gu, Zheng-Cheng (Author), Wen, Xiao-Gang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2015-01-13T14:45:09Z.
Subjects:
Online Access:Get fulltext
LEADER 01746 am a22002413u 4500
001 92814
042 |a dc 
100 1 0 |a Liu, Zheng-Xin  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Wen, Xiao-Gang  |e contributor 
700 1 0 |a Gu, Zheng-Cheng  |e author 
700 1 0 |a Wen, Xiao-Gang  |e author 
245 0 0 |a Microscopic Realization of Two-Dimensional Bosonic Topological Insulators 
260 |b American Physical Society,   |c 2015-01-13T14:45:09Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/92814 
520 |a It is well known that a bosonic Mott insulator can be realized by condensing vortices of a boson condensate. Usually, a vortex becomes an antivortex (and vice versa) under time reversal symmetry, and the condensation of vortices results in a trivial Mott insulator. However, if each vortex or antivortex interacts with a spin trapped at its core, the time reversal transformation of the composite vortex operator will contain an extra minus sign. It turns out that such a composite vortex condensed state is a bosonic topological insulator (BTI) with gapless boundary excitations protected by U(1) ⋊ Z[T over 2] symmetry. We point out that in BTI, an external π-flux monodromy defect carries a Kramers doublet. We propose lattice model Hamiltonians to realize the BTI phase, which might be implemented in cold atom systems or spin-1 solid state systems. 
520 |a Perimeter Institute for Theoretical Physics 
520 |a National Science Foundation (U.S.) (Grant DMR-1005541) 
520 |a National Natural Science Foundation (China) (11274192) 
520 |a Templeton Foundation (Grant 39901) 
546 |a en 
655 7 |a Article 
773 |t Physical Review Letters