Pilot-wave hydrodynamics in a rotating frame: Exotic orbits

We present the results of a numerical investigation of droplets walking on a rotating vibrating fluid bath. The drop's trajectory is described by an integro-differential equation, which is simulated numerically in various parameter regimes. As the forcing acceleration is progressively increased...

Full description

Bibliographic Details
Main Authors: Oza, Anand Uttam (Contributor), Wind-Willassen, Øistein (Author), Harris, Daniel Martin (Contributor), Rosales, Rodolfo R. (Contributor), Bush, John W. M. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: American Institute of Physics (AIP), 2015-01-14T21:41:32Z.
Subjects:
Online Access:Get fulltext
LEADER 02479 am a22003493u 4500
001 92872
042 |a dc 
100 1 0 |a Oza, Anand Uttam  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Oza, Anand Uttam  |e contributor 
100 1 0 |a Harris, Daniel Martin  |e contributor 
100 1 0 |a Rosales, Rodolfo R.  |e contributor 
100 1 0 |a Bush, John W. M.  |e contributor 
700 1 0 |a Wind-Willassen, Øistein  |e author 
700 1 0 |a Harris, Daniel Martin  |e author 
700 1 0 |a Rosales, Rodolfo R.  |e author 
700 1 0 |a Bush, John W. M.  |e author 
245 0 0 |a Pilot-wave hydrodynamics in a rotating frame: Exotic orbits 
260 |b American Institute of Physics (AIP),   |c 2015-01-14T21:41:32Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/92872 
520 |a We present the results of a numerical investigation of droplets walking on a rotating vibrating fluid bath. The drop's trajectory is described by an integro-differential equation, which is simulated numerically in various parameter regimes. As the forcing acceleration is progressively increased, stable circular orbits give way to wobbling orbits, which are succeeded in turn by instabilities of the orbital center characterized by steady drifting then discrete leaping. In the limit of large vibrational forcing, the walker's trajectory becomes chaotic, but its statistical behavior reflects the influence of the unstable orbital solutions. The study results in a complete regime diagram that summarizes the dependence of the walker's behavior on the system parameters. Our predictions compare favorably to the experimental observations of Harris and Bush ["Droplets walking in a rotating frame: from quantized orbits to multimodal statistics," J. Fluid Mech.739, 444-464 (2014)]. 
520 |a National Science Foundation (U.S.) (NSF Grant No. CBET-0966452) 
520 |a National Science Foundation (U.S.) (NSF Grant No. CMMI-1333242) 
520 |a National Science Foundation (U.S.) (Grant Nos. DMS-1007967) 
520 |a National Science Foundation (U.S.) (Grant No. DMS-1115278) 
520 |a National Science Foundation (U.S.) (Grant No. DMS-1318942) 
520 |a National Science Foundation (U.S.) (NSF Graduate Research Fellowship Program) 
520 |a Fannie and John Hertz Foundation 
520 |a Danish National Advanced Technology Foundation (NanoPlast project) 
546 |a en_US 
655 7 |a Article 
773 |t Physics of Fluids