Electrically tunable quantum spin Hall state in topological crystalline insulator thin films

Based on electronic structure calculations and theoretical analysis, we predict the (111) thin films of the SnTe class of three-dimensional (3D) topological crystalline insulators (TCIs) realize the quantum spin Hall phase in a wide range of thicknesses. The nontrivial topology originates from the i...

Full description

Bibliographic Details
Main Authors: Liu, Junwei (Contributor), Fu, Liang (Contributor)
Other Authors: Massachusetts Institute of Technology. Materials Processing Center (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2015-03-03T19:50:51Z.
Subjects:
Online Access:Get fulltext
LEADER 01595 am a22002293u 4500
001 95770
042 |a dc 
100 1 0 |a Liu, Junwei  |e author 
100 1 0 |a Massachusetts Institute of Technology. Materials Processing Center  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Liu, Junwei  |e contributor 
100 1 0 |a Fu, Liang  |e contributor 
700 1 0 |a Fu, Liang  |e author 
245 0 0 |a Electrically tunable quantum spin Hall state in topological crystalline insulator thin films 
260 |b American Physical Society,   |c 2015-03-03T19:50:51Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/95770 
520 |a Based on electronic structure calculations and theoretical analysis, we predict the (111) thin films of the SnTe class of three-dimensional (3D) topological crystalline insulators (TCIs) realize the quantum spin Hall phase in a wide range of thicknesses. The nontrivial topology originates from the intersurface coupling of the topological surface states of TCIs in the 3D limit. The intersurface coupling changes sign and gives rise to topological phase transitions as a function of film thickness. Furthermore, this coupling can be strongly affected by an external electric field, hence the quantum spin Hall phase can be effectively tuned under the experimentally accessible electric field. 
520 |a National Science Foundation (U.S.) (STC Center for Integrated Quantum Materials) 
520 |a National Science Foundation (U.S.) (Grant DMR-1231319) 
546 |a en 
655 7 |a Article 
773 |t Physical Review B