Analyzing the Effects of Human-Aware Motion Planning on Close-Proximity Human-Robot Collaboration

Objective: The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. Background: The evaluation of human response to adaptive robotic assistants has been limited, particular...

Full description

Bibliographic Details
Main Authors: Lasota, Przemyslaw Andrzej (Contributor), Shah, Julie A. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics (Contributor)
Format: Article
Language:English
Published: Sage Publications, 2015-06-26T13:26:08Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Objective: The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. Background: The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human-robot interaction. Method: We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. Results: When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. Conclusion: People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human-robot team fluency and human worker satisfaction. Application: Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human-robot collaboration.