Integration of Solid-State Nanopores in Microfluidic Networks via Transfer Printing of Suspended Membranes

Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machinin...

Full description

Bibliographic Details
Main Authors: Jain, Tarun (Contributor), Guerrero, Ricardo Jose S. (Contributor), Aguilar, Carlos A. (Contributor), Karnik, Rohit (Contributor)
Other Authors: Lincoln Laboratory (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2015-06-26T13:55:34Z.
Subjects:
Online Access:Get fulltext
LEADER 02224 am a22002773u 4500
001 97533
042 |a dc 
100 1 0 |a Jain, Tarun  |e author 
100 1 0 |a Lincoln Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Jain, Tarun  |e contributor 
100 1 0 |a Guerrero, Ricardo Jose S.  |e contributor 
100 1 0 |a Aguilar, Carlos A.  |e contributor 
100 1 0 |a Karnik, Rohit  |e contributor 
700 1 0 |a Guerrero, Ricardo Jose S.  |e author 
700 1 0 |a Aguilar, Carlos A.  |e author 
700 1 0 |a Karnik, Rohit  |e author 
245 0 0 |a Integration of Solid-State Nanopores in Microfluidic Networks via Transfer Printing of Suspended Membranes 
260 |b American Chemical Society (ACS),   |c 2015-06-26T13:55:34Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/97533 
520 |a Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support for the membrane contributes capacitive noise and limits integration with microfluidic networks for sample preprocessing. Herein, we demonstrate a technique to directly transfer solid-state nanopores machined in dielectric membranes from a silicon support into a microfluidic network. The resulting microfluidic-addressable nanopores can sense single DNA molecules at high bandwidths and with low noise, owing to significant reductions in membrane capacitance. This strategy will enable large-scale integration of solid-state nanopores with microfluidic upstream and downstream processing and permit new functions with nanopores such as complex manipulations for multidimensional analysis and parallel sensing in two and three-dimensional architectures. 
520 |a National Institutes of Health (U.S.) (Grant R21EB009180) 
520 |a United States. Air Force (Contract FA8721-05-C-0002) 
546 |a en_US 
655 7 |a Article 
773 |t Analytical Chemistry