A space-time certified reduced basis method for Burgers' equation

We present a space-time interpolation-based certified reduced basis method for Burgers' equation over the spatial interval (0, 1) and the temporal interval (0, T] parametrized with respect to the Peclet number. We first introduce a Petrov-Galerkin space-time finite element discretization which...

Full description

Bibliographic Details
Main Authors: Yano, Masayuki (Contributor), Patera, Anthony T. (Contributor), Urban, Karsten (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: World Scientific, 2015-07-07T16:33:14Z.
Subjects:
Online Access:Get fulltext
LEADER 02303 am a22002653u 4500
001 97700
042 |a dc 
100 1 0 |a Yano, Masayuki  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Yano, Masayuki  |e contributor 
100 1 0 |a Patera, Anthony T.  |e contributor 
700 1 0 |a Patera, Anthony T.  |e author 
700 1 0 |a Urban, Karsten  |e author 
245 0 0 |a A space-time certified reduced basis method for Burgers' equation 
246 3 3 |a A space-time hp-interpolation-based certified reduced basis method for Burgers' equation 
260 |b World Scientific,   |c 2015-07-07T16:33:14Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/97700 
520 |a We present a space-time interpolation-based certified reduced basis method for Burgers' equation over the spatial interval (0, 1) and the temporal interval (0, T] parametrized with respect to the Peclet number. We first introduce a Petrov-Galerkin space-time finite element discretization which enjoys a favorable inf-sup constant that decreases slowly with Peclet number and final time T. We then consider an hp interpolation-based space-time reduced basis approximation and associated Brezzi-Rappaz-Raviart a posteriori error bounds. We describe computational offline-online decomposition procedures for the three key ingredients of the error bounds: the dual norm of the residual, a lower bound for the inf-sup constant, and the space-time Sobolev embedding constant. Numerical results demonstrate that our space-time formulation provides improved stability constants compared to classical L[superscript 2]-error estimates; the error bounds remain sharp over a wide range of Peclet numbers and long integration times T, in marked contrast to the exponentially growing estimate of the classical formulation for high Peclet number cases. 
520 |a United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-09-1-0613) 
520 |a United States. Office of Naval Research (Grant N00014-11-1-0713) 
520 |a Deutsche Forschungsgemeinschaft (Ur-63/9) 
520 |a Deutsche Forschungsgemeinschaft (GrK1100) 
546 |a en_US 
655 7 |a Article 
773 |t Mathematical Models and Methods in Applied Sciences