Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions

The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that...

Full description

Bibliographic Details
Main Authors: Kagan, Grigory Alexandrovich (Contributor), Svyatskiy, D. (Author), Huang, C.-K (Author), McDevitt, C. J (Author), Rinderknecht, Hans G. (Contributor), Rosenberg, Michael Jonathan (Contributor), Zylstra, Alex Bennett (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2015-09-08T12:47:05Z.
Subjects:
Online Access:Get fulltext
LEADER 01790 am a22002773u 4500
001 98380
042 |a dc 
100 1 0 |a Kagan, Grigory Alexandrovich  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Rinderknecht, Hans G.  |e contributor 
100 1 0 |a Rosenberg, Michael Jonathan  |e contributor 
100 1 0 |a Zylstra, Alex Bennett  |e contributor 
100 1 0 |a Kagan, Grigory Alexandrovich  |e contributor 
700 1 0 |a Svyatskiy, D.  |e author 
700 1 0 |a Huang, C.-K.  |e author 
700 1 0 |a McDevitt, C. J.  |e author 
700 1 0 |a Rinderknecht, Hans G.  |e author 
700 1 0 |a Rosenberg, Michael Jonathan  |e author 
700 1 0 |a Zylstra, Alex Bennett  |e author 
245 0 0 |a Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions 
260 |b American Physical Society,   |c 2015-09-08T12:47:05Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/98380 
520 |a The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at the National Ignition Facility. 
546 |a en 
655 7 |a Article 
773 |t Physical Review Letters