Analysis of Peripapillary Atrophy Using Spectral Domain Optical Coherence Tomography

Objective To study retinal morphologic changes around the optic disc in patients with peripapillary atrophy (PPA) with high-resolution spectral domain optical coherence tomography (SD OCT). Design Cross-sectional, retrospective analysis. Participants A total of 103 eyes of 73 patients with PPA and 2...

Full description

Bibliographic Details
Main Authors: Manjunath, Varsha (Author), Shah, Heeral (Author), Fujimoto, James G. (Contributor), Duker, Jay S. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: Elsevier, 2015-09-22T17:11:06Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Objective To study retinal morphologic changes around the optic disc in patients with peripapillary atrophy (PPA) with high-resolution spectral domain optical coherence tomography (SD OCT). Design Cross-sectional, retrospective analysis. Participants A total of 103 eyes of 73 patients with PPA and 21 eyes of 12 normal patients seen at the New England Eye Center, Tufts Medical Center, between January 2007 and August 2009. Methods Spectral domain optical coherence tomography images taken through the region of PPA were quantitatively and qualitatively analyzed. Inclusion criteria included eyes with at least 300 μm of temporal PPA as detected on color fundus photographs. The study population was divided into subgroups according to the following clinical diagnoses: glaucoma (n=13), age-related macular degeneration (n=11), high myopia (n=11), glaucoma and high myopia (n=3), and optic neuropathy (n=11). Fifty-four patients were classified with other diagnoses. By using OCT software, retinal thickness and retinal nerve fiber layer (RNFL) thickness were both manually measured perpendicular to the internal limiting membrane and retinal pigment epithelium (RPE) 300 μm temporal to the optic disc, within the region of PPA. Qualitative analysis for morphologic changes in the atrophic area was also performed. Main Outcome Measures Qualitative assessment and quantitative measures of retinal and RNFL thickness in PPA. Results The study group was categorized by 6 characteristics demonstrated in the area of PPA by SD OCT: RPE loss with accompanying photoreceptor loss, RPE disruption, RNFL thickening with plaque-like formation, intraretinal cystic changes, inner and outer retinal thinning, and abnormal retinal sloping. Statistical analysis of measurements revealed a statistically significant difference in the total retinal thickness between normal eyes and eyes with PPA (P=0.0005), with normal eyes 15% thicker than the eyes with PPA; however, the RNFL thickness was not significantly different between the normal eyes and the eyes with PPA (P=0.05). Conclusions Eyes with PPA manifest characteristic retinal changes that can be described via SD OCT.
National Institutes of Health (U.S.) (Contract R01-EY11289-24)
National Institutes of Health (U.S.) (Contract R01-EY13178-10)
National Institutes of Health (U.S.) (Contract R01-EY013516-07)
United States. Air Force Office of Scientific Research (FA9550-07-1-0101)
United States. Air Force Office of Scientific Research (FA9550-07-1-0014)
Massachusetts Lions Eye Research Fund, Inc.