Highly stable, ligand-clustered "patchy" micelle nanocarriers for systemic tumor targeting

A novel linear-dendritic block copolymer has been synthesized and evaluated for targeted delivery. The use of the dendron as the micellar exterior block in this architecture allows the presentation of a relatively small quantity of ligands in clusters for enhanced targeting, thus maintaining a long...

Full description

Bibliographic Details
Main Authors: Poon, Zhiyong (Contributor), Lee, Jung Ah (Contributor), Huang, Shenwen (Contributor), Prevost, Richard J. (Contributor), Hammond, Paula T. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor)
Format: Article
Language:English
Published: Elsevier, 2015-10-21T15:13:02Z.
Subjects:
Online Access:Get fulltext
LEADER 01959 am a22002893u 4500
001 99388
042 |a dc 
100 1 0 |a Poon, Zhiyong  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Poon, Zhiyong  |e contributor 
100 1 0 |a Lee, Jung Ah  |e contributor 
100 1 0 |a Huang, Shenwen  |e contributor 
100 1 0 |a Prevost, Richard J.  |e contributor 
100 1 0 |a Hammond, Paula T.  |e contributor 
700 1 0 |a Lee, Jung Ah  |e author 
700 1 0 |a Huang, Shenwen  |e author 
700 1 0 |a Prevost, Richard J.  |e author 
700 1 0 |a Hammond, Paula T.  |e author 
245 0 0 |a Highly stable, ligand-clustered "patchy" micelle nanocarriers for systemic tumor targeting 
260 |b Elsevier,   |c 2015-10-21T15:13:02Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/99388 
520 |a A novel linear-dendritic block copolymer has been synthesized and evaluated for targeted delivery. The use of the dendron as the micellar exterior block in this architecture allows the presentation of a relatively small quantity of ligands in clusters for enhanced targeting, thus maintaining a long circulation time of these "patchy" micelles. The polypeptide linear hydrophobic block drives formation of micelles that carry core-loaded drugs, and their unique design gives them extremely high stability in vivo. We have found that these systems lead to extended time periods of increased accumulation in the tumor (up to 5 days) compared with nontargeted vehicles. We also demonstrate a fourfold increase in efficacy of paclitaxel when delivered in the targeted nanoparticle systems, while significantly decreasing in vivo toxicity of the chemotherapy treatment. 
520 |a National Institute for Biomedical Imaging and Bioengineering (U.S.) 
520 |a National Cancer Institute (U.S.) (R01EB008082-01A2) 
546 |a en_US 
655 7 |a Article 
773 |t Nanomedicine: Nanotechnology, Biology and Medicine