Preventing and reversing vacuum-induced optical losses in high-finesse tantalum (V) oxide mirror coatings

High-finesse optical cavities placed under vacuum are foundational platforms in quantum information science with photons and atoms. We study the vacuum-induced degradation of high-finesse optical cavities with mirror coatings composed of SiO[subscript 2]-Ta[subscript 2]O[subscript 5] dielectric stac...

Full description

Bibliographic Details
Main Authors: Gangloff, Dorian (Contributor), Shi, Molu (Contributor), Wu, Tailin (Contributor), Bylinskii, Alexei (Contributor), Braverman, Boris (Contributor), Nichols, Rosanna (Contributor), Li, Junru (Contributor), Aichholz, Kai (Contributor), Cetina, Marko (Contributor), Karpa, Leon (Contributor), Gutierrez, Michael Steven (Contributor), Jelenkovic, Branislav (Author), Vuletic, Vladan (Contributor), Chuang, Isaac L. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor), MIT-Harvard Center for Ultracold Atoms (Contributor), Chuang, Isaac (Contributor)
Format: Article
Language:English
Published: Optical Society of America, 2015-11-16T13:08:46Z.
Subjects:
Online Access:Get fulltext
LEADER 03339 am a22005293u 4500
001 99933
042 |a dc 
100 1 0 |a Gangloff, Dorian  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a MIT-Harvard Center for Ultracold Atoms  |e contributor 
100 1 0 |a Gangloff, Dorian  |e contributor 
100 1 0 |a Shi, Molu  |e contributor 
100 1 0 |a Wu, Tailin  |e contributor 
100 1 0 |a Bylinskii, Alexei  |e contributor 
100 1 0 |a Braverman, Boris  |e contributor 
100 1 0 |a Gutierrez, Michael Steven  |e contributor 
100 1 0 |a Nichols, Rosanna  |e contributor 
100 1 0 |a Li, Junru  |e contributor 
100 1 0 |a Aichholz, Kai  |e contributor 
100 1 0 |a Cetina, Marko  |e contributor 
100 1 0 |a Karpa, Leon  |e contributor 
100 1 0 |a Chuang, Isaac  |e contributor 
100 1 0 |a Vuletic, Vladan  |e contributor 
700 1 0 |a Shi, Molu  |e author 
700 1 0 |a Wu, Tailin  |e author 
700 1 0 |a Bylinskii, Alexei  |e author 
700 1 0 |a Braverman, Boris  |e author 
700 1 0 |a Nichols, Rosanna  |e author 
700 1 0 |a Li, Junru  |e author 
700 1 0 |a Aichholz, Kai  |e author 
700 1 0 |a Cetina, Marko  |e author 
700 1 0 |a Karpa, Leon  |e author 
700 1 0 |a Gutierrez, Michael Steven  |e author 
700 1 0 |a Jelenkovic, Branislav  |e author 
700 1 0 |a Vuletic, Vladan  |e author 
700 1 0 |a Chuang, Isaac L.  |e author 
245 0 0 |a Preventing and reversing vacuum-induced optical losses in high-finesse tantalum (V) oxide mirror coatings 
260 |b Optical Society of America,   |c 2015-11-16T13:08:46Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/99933 
520 |a High-finesse optical cavities placed under vacuum are foundational platforms in quantum information science with photons and atoms. We study the vacuum-induced degradation of high-finesse optical cavities with mirror coatings composed of SiO[subscript 2]-Ta[subscript 2]O[subscript 5] dielectric stacks, and present methods to protect these coatings and to recover their initial low loss levels. For separate coatings with reflectivities centered at 370 nm and 422 nm, a vacuum-induced continuous increase in optical loss occurs if the surface-layer coating is made of Ta[subscript 2]O[subscript 5], while it does not occur if it is made of SiO[subscript 2]. The incurred optical loss can be reversed by filling the vacuum chamber with oxygen at atmospheric pressure, and the recovery rate can be strongly accelerated by continuous laser illumination at 422 nm. Both the degradation and the recovery processes depend strongly on temperature. We find that a 1 nm-thick layer of SiO[subscript 2] passivating the Ta[subscript 2]O[subscript 5] surface layer is sufficient to reduce the degradation rate by more than a factor of 10, strongly supporting surface oxygen depletion as the primary degradation mechanism. 
520 |a National Science Foundation (U.S.). Center for Ultracold Atoms 
520 |a United States. Intelligence Advanced Research Projects Activity. Multi-Qubit Coherent Operations Program 
546 |a en_US 
655 7 |a Article 
773 |t Optics Express