Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics

Entropy, first introduced in thermodynamics, is used in a wide range of fields. Chapter 1 discusses some important theoretical and practical aspects of entropy: what is entropy, is it subjective or objective, and how to properly apply it to living organisms. Chapter 2 presents applications of entrop...

Full description

Bibliographic Details
Main Author: Popovic, Marko
Format: Others
Published: BYU ScholarsArchive 2018
Subjects:
Online Access:https://scholarsarchive.byu.edu/etd/6996
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7996&context=etd
id ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-7996
record_format oai_dc
spelling ndltd-BGMYU2-oai-scholarsarchive.byu.edu-etd-79962019-05-16T03:38:15Z Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics Popovic, Marko Entropy, first introduced in thermodynamics, is used in a wide range of fields. Chapter 1 discusses some important theoretical and practical aspects of entropy: what is entropy, is it subjective or objective, and how to properly apply it to living organisms. Chapter 2 presents applications of entropy to evolution. Chapter 3 shows how cellulosic biofuel production can be improved. Chapter 4 shows how lattice vacancies influence the thermodynamic properties of materials. To determine the nature of thermodynamic entropy, Chapters 1 and 2 describe the roots, the conceptual history of entropy, as well as its path of development and application. From the viewpoint of physics, thermal entropy is a measure of useless energy stored in a system resulting from thermal motion of particles. Thermal entropy is a non-negative objective property. The negentropy concept, while mathematically correct, is physically misleading. This dissertation hypothesizes that concepts from thermodynamics and statistical mechanics can be used to define statistical measurements, similar to thermodynamic entropy, to summarize the convergence of processes driven by random inputs subject to deterministic constraints. A primary example discussed here is evolution in biological systems. As discussed in this dissertation, the first and second laws of thermodynamics do not translate directly into parallel laws for the biome. But, the fundamental principles on which thermodynamic entropy is based are also true for information. Based on these principles, it is shown that adaptation and evolution are stochastically deterministic. Chapter 3 discusses the hydrolysis of cellulose to glucose, which is a key reaction in renewable energy from biomass and in mineralization of soil organic matter to CO2. Conditional thermodynamic parameters, ΔhydG', ΔhydH', and ΔhydS', and equilibrium glucose concentrations are reported for the reaction C6H10O5(cellulose) + H2O(l) ⇄ C6H12O6(aq) as functions of temperature from 0 to 100°C. Activity coefficients of aqueous glucose solution were determined as a function of temperature. The results suggest that producing cellulosic biofuels at higher temperatures will result in higher conversion. Chapter 4 presents the data and a theory relating the linear term in the low temperature heat capacity to lattice vacancy concentration. The theory gives a quantitative result for disordered vacancies, but overestimates the contribution from ordered vacancies because ordering leads to a decreased influence of vacancies on heat capacity. 2018-06-01T07:00:00Z text application/pdf https://scholarsarchive.byu.edu/etd/6996 https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7996&context=etd http://lib.byu.edu/about/copyright/ All Theses and Dissertations BYU ScholarsArchive negentropy Shannon entropy information order disorder Gibbs free energy cellulose hydrolysis lattice vacancies heat capacity samarium and neodymium doped ceria Chemistry
collection NDLTD
format Others
sources NDLTD
topic negentropy
Shannon entropy
information
order
disorder
Gibbs free energy
cellulose hydrolysis
lattice vacancies
heat capacity
samarium and neodymium doped ceria
Chemistry
spellingShingle negentropy
Shannon entropy
information
order
disorder
Gibbs free energy
cellulose hydrolysis
lattice vacancies
heat capacity
samarium and neodymium doped ceria
Chemistry
Popovic, Marko
Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics
description Entropy, first introduced in thermodynamics, is used in a wide range of fields. Chapter 1 discusses some important theoretical and practical aspects of entropy: what is entropy, is it subjective or objective, and how to properly apply it to living organisms. Chapter 2 presents applications of entropy to evolution. Chapter 3 shows how cellulosic biofuel production can be improved. Chapter 4 shows how lattice vacancies influence the thermodynamic properties of materials. To determine the nature of thermodynamic entropy, Chapters 1 and 2 describe the roots, the conceptual history of entropy, as well as its path of development and application. From the viewpoint of physics, thermal entropy is a measure of useless energy stored in a system resulting from thermal motion of particles. Thermal entropy is a non-negative objective property. The negentropy concept, while mathematically correct, is physically misleading. This dissertation hypothesizes that concepts from thermodynamics and statistical mechanics can be used to define statistical measurements, similar to thermodynamic entropy, to summarize the convergence of processes driven by random inputs subject to deterministic constraints. A primary example discussed here is evolution in biological systems. As discussed in this dissertation, the first and second laws of thermodynamics do not translate directly into parallel laws for the biome. But, the fundamental principles on which thermodynamic entropy is based are also true for information. Based on these principles, it is shown that adaptation and evolution are stochastically deterministic. Chapter 3 discusses the hydrolysis of cellulose to glucose, which is a key reaction in renewable energy from biomass and in mineralization of soil organic matter to CO2. Conditional thermodynamic parameters, ΔhydG', ΔhydH', and ΔhydS', and equilibrium glucose concentrations are reported for the reaction C6H10O5(cellulose) + H2O(l) ⇄ C6H12O6(aq) as functions of temperature from 0 to 100°C. Activity coefficients of aqueous glucose solution were determined as a function of temperature. The results suggest that producing cellulosic biofuels at higher temperatures will result in higher conversion. Chapter 4 presents the data and a theory relating the linear term in the low temperature heat capacity to lattice vacancy concentration. The theory gives a quantitative result for disordered vacancies, but overestimates the contribution from ordered vacancies because ordering leads to a decreased influence of vacancies on heat capacity.
author Popovic, Marko
author_facet Popovic, Marko
author_sort Popovic, Marko
title Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics
title_short Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics
title_full Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics
title_fullStr Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics
title_full_unstemmed Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics
title_sort application of the entropy concept to thermodynamics and life sciences: evolution parallels thermodynamics, cellulose hydrolysis thermodynamics, and ordered and disordered vacancies thermodynamics
publisher BYU ScholarsArchive
publishDate 2018
url https://scholarsarchive.byu.edu/etd/6996
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7996&context=etd
work_keys_str_mv AT popovicmarko applicationoftheentropyconcepttothermodynamicsandlifesciencesevolutionparallelsthermodynamicscellulosehydrolysisthermodynamicsandorderedanddisorderedvacanciesthermodynamics
_version_ 1719187458293235712