Exploration of robust software sensor techniques with applications in vehicle positioning and bioprocess state estimation

Résumé : Le travail réalisé au cours de cette thèse traite de la mise au point de méthodes d’estimation d’état robuste, avec deux domaines d’application en ligne de mire. Le premier concerne le positionnement sécuritaire en transport. L’objectif est de fournir la position et la vitesse du véhicule s...

Full description

Bibliographic Details
Main Author: Goffaux, Guillaume
Other Authors: Hancq, Joël
Format: Others
Language:en
Published: Faculte Polytechnique de Mons 2010
Subjects:
Online Access:http://theses.fpms.ac.be/ETD-db/collection/available/FPMSetd-03182010-110501/
Description
Summary:Résumé : Le travail réalisé au cours de cette thèse traite de la mise au point de méthodes d’estimation d’état robuste, avec deux domaines d’application en ligne de mire. Le premier concerne le positionnement sécuritaire en transport. L’objectif est de fournir la position et la vitesse du véhicule sous la forme d’intervalles avec un grand degré de confiance. Le second concerne la synthèse de capteurs logiciels pour les bioprocédés, et en particulier la reconstruction des concentrations de composants réactionnels à partir d’un nombre limité de mesures et d’un modèle mathématique interprétant le comportement dynamique de ces composants. L’objectif principal est de concevoir des algorithmes qui puissent fournir des estimations acceptables en dépit des incertitudes provenant de la mauvaise connaissance du système comme les incertitudes sur les paramètres du modèle ou les incertitudes de mesures. Dans ce contexte, plusieurs algorithmes ont été étudiés et mis au point. Ainsi, dans le cadre du positionnement de véhicule, la recherche s’est dirigée vers les méthodes robustes Hinfini et les méthodes par intervalles. Les méthodes Hinfini sont des méthodes linéaires prenant en compte une incertitude dans la modélisation et réalisant une optimisation min-max, c’est-à-dire minimisant une fonction de coût qui représente la pire situation compte tenu des incertitudes paramétriques. La contribution de ce travail concerne l’extension à des modèles faiblement non linéaires et l’utilisation d’une fenêtre glissante pour faire face à des mesures asynchrones. Les méthodes par intervalles développées ont pour but de calculer les couloirs de confiance des variables position et vitesse en se basant sur la combinaison d’intervalles issus des capteurs d’une part et sur l’utilisation conjointe d’un modèle dynamique et cinématique du véhicule d’autre part. Dans le cadre des capteurs logiciels pour bioprocédés, trois familles de méthodes ont été étudiées: le filtrage particulaire, les méthodes par intervalles et le filtrage par horizon glissant. Le filtrage particulaire est basé sur des méthodes de Monte-Carlo pour estimer la densité de probabilité conditionnelle de l’état connaissant les mesures. Un de ses principaux inconvénients est sa sensibilité aux erreurs paramétriques. La méthode développée s’applique aux bioprocédés et profite de la structure particulière des modèles pour proposer une version du filtrage particulaire robuste aux incertitudes des paramètres cinétiques. Des méthodes d’estimation par intervalles sont adaptées à la situation où les mesures sont disponibles à des instants discrets, avec une faible fréquence d’échantillonnage, en développant des prédicteurs appropriés. L’utilisation d’un faisceau de prédicteurs grâce à des transformations d’état et le couplage entre les prédicteurs avec des réinitialisations fréquentes permettent d’améliorer les résultats d’estimation. Enfin, une méthode basée sur le filtre à horizon glissant est étudiée en effectuant une optimisation min-max : la meilleure condition initiale est reconstruite pour le plus mauvais modèle. Des solutions sont aussi proposées pour minimiser la quantité de calculs. Pour conclure, les méthodes et résultats obtenus constituent un ensemble d’améliorations dans le cadre de la mise au point d’algorithmes robustes vis-à-vis des incertitudes. Selon les applications et les objectifs fixés, telle ou telle famille de méthodes sera privilégiée. Cependant, dans un souci de robustesse, il est souvent utile de fournir les estimations sous forme d’intervalles auxquels est associé un niveau de confiance lié aux conditions de l’estimation. C’est pourquoi, une des méthodes les plus adaptées aux objectifs de robustesse est représentée par les méthodes par intervalles de confiance et leur développement constituera un point de recherche futur. __________________________________________ Abstract : This thesis work is about the synthesis of robust state estimation methods applied to two different domains. The first area is dedicated to the safe positioning in transport. The objective is to compute the vehicle position and velocity by intervals with a great confidence level. The second area is devoted to the software sensor design in bioprocess applications. The component concentrations are estimated from a limited number of measurements and a mathematical model describing the dynamical behavior of the system. The main interest is to design algorithms which achieve estimation performance and take uncertainties into account coming from the model parameters and the measurement errors. In this context, several algorithms have been studied and designed. Concerning the vehicle positioning, the research activities have led to robust Hinfinity methods and interval estimation methods. The robust Hinfinity methods use a linear model taking model uncertainty into account and perform a min-max optimization, minimizing a cost function which describes the worst-case configuration. The contribution in this domain is an extension to some systems with a nonlinear model and the use of a receding time window facing with asynchronous data. The developed interval algorithms compute confidence intervals of the vehicle velocity and position. They use interval combinations by union and intersection operations obtained from sensors along with kinematic and dynamic models. In the context of bioprocesses, three families of state estimation methods have been investigated: particle filtering, interval methods and moving-horizon filtering. The particle filtering is based on Monte-Carlo drawings to estimate the posterior probability density function of the state variables knowing the measurements. A major drawback is its sensitivity to model uncertainties. The proposed algorithm is dedicated to bioprocess applications and takes advantage of the characteristic structure of the models to design an alternative version of the particle filter which is robust to uncertainties in the kinetic terms. Moreover, interval observers are designed in the context of bioprocesses. The objective is to extend the existing methods to discrete-time measurements by developing interval predictors. The use of a bundle of interval predictors thanks to state transformations and the use of the predictor coupling with reinitializations improve significantly the estimation performance. Finally, a moving-horizon filter is designed, based on a min-max optimization problem. The best initial conditions are generated from the model using the worst parameter configuration. Furthermore, additional solutions have been provided to reduce the computational cost. To conclude, the developed algorithms and related results can be seen as improvements in the design of estimation methods which are robust to uncertainties. According to the application and the objectives, a family may be favored. However, in order to satisfy some robustness criteria, an interval is preferred along with a measure of the confidence level describing the conditions of the estimation. That is why, the development of confidence interval observers represents an important topic in the future fields of investigation.