Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis

Thesis advisor: Dunwei Wang === Photosynthesis converts solar energy and stores it in chemical forms. It is one of the most important processes in nature. Artificial photosynthesis, similar to nature, can provide us reaction products that can potentially be used as fuel. This process promises a sol...

Full description

Bibliographic Details
Main Author: Liu, Rui
Format: Others
Language:English
Published: Boston College 2013
Subjects:
Online Access:http://hdl.handle.net/2345/3160
id ndltd-BOSTON-oai-dlib.bc.edu-bc-ir_101305
record_format oai_dc
spelling ndltd-BOSTON-oai-dlib.bc.edu-bc-ir_1013052019-05-10T07:34:09Z Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis Liu, Rui Thesis advisor: Dunwei Wang Text thesis 2013 Boston College English electronic application/pdf Photosynthesis converts solar energy and stores it in chemical forms. It is one of the most important processes in nature. Artificial photosynthesis, similar to nature, can provide us reaction products that can potentially be used as fuel. This process promises a solution to challenges caused by the intermitted nature of solar energy. Theoretical studies show that photosynthesis can be efficient and inexpensive. To achieve this goal, we need materials with suitable properties of light absorption charge separation, chemical stability, and compatibility with catalysts. For large-scale purpose, the materials should also be made of earth abundant elements. However, no material has been found to meet all requirements. As a result, existing photosynthesis is either too inefficient or too costly, creating a critical challenge in solar energy research. In this dissertation, we use inorganic semiconductors as model systems to present our strategies to combat this challenge through novel material designs of material morphologies, synthesis and chemical reaction pathways. Guided by an insight that a collection of disired properties may be obtained by combining multiple material components (such as nanostructured semiconductor, effective catalysts, designed chemical reactions) through heterojunctions, we have produced some advanced systems aimed at solving fundamental challenges common in inorganic semiconductors. Most of the results will be presented within this dissertation of highly specific reaction routes for carbon dioxide photofixation as well as solar water splitting. Artificial Photosynthesis CO2 Photoreduction Nanostructure Semiconductor Water Splitting Copyright is held by the author, with all rights reserved, unless otherwise noted. Thesis (PhD) — Boston College, 2013. Submitted to: Boston College. Graduate School of Arts and Sciences. Discipline: Chemistry. 385978 http://hdl.handle.net/2345/3160
collection NDLTD
language English
format Others
sources NDLTD
topic Artificial Photosynthesis
CO2 Photoreduction
Nanostructure
Semiconductor
Water Splitting
spellingShingle Artificial Photosynthesis
CO2 Photoreduction
Nanostructure
Semiconductor
Water Splitting
Liu, Rui
Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis
description Thesis advisor: Dunwei Wang === Photosynthesis converts solar energy and stores it in chemical forms. It is one of the most important processes in nature. Artificial photosynthesis, similar to nature, can provide us reaction products that can potentially be used as fuel. This process promises a solution to challenges caused by the intermitted nature of solar energy. Theoretical studies show that photosynthesis can be efficient and inexpensive. To achieve this goal, we need materials with suitable properties of light absorption charge separation, chemical stability, and compatibility with catalysts. For large-scale purpose, the materials should also be made of earth abundant elements. However, no material has been found to meet all requirements. As a result, existing photosynthesis is either too inefficient or too costly, creating a critical challenge in solar energy research. In this dissertation, we use inorganic semiconductors as model systems to present our strategies to combat this challenge through novel material designs of material morphologies, synthesis and chemical reaction pathways. Guided by an insight that a collection of disired properties may be obtained by combining multiple material components (such as nanostructured semiconductor, effective catalysts, designed chemical reactions) through heterojunctions, we have produced some advanced systems aimed at solving fundamental challenges common in inorganic semiconductors. Most of the results will be presented within this dissertation of highly specific reaction routes for carbon dioxide photofixation as well as solar water splitting. === Thesis (PhD) — Boston College, 2013. === Submitted to: Boston College. Graduate School of Arts and Sciences. === Discipline: Chemistry.
author Liu, Rui
author_facet Liu, Rui
author_sort Liu, Rui
title Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis
title_short Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis
title_full Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis
title_fullStr Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis
title_full_unstemmed Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis
title_sort nanostructured semiconductors for high efficiency artificial photosynthesis
publisher Boston College
publishDate 2013
url http://hdl.handle.net/2345/3160
work_keys_str_mv AT liurui nanostructuredsemiconductorsforhighefficiencyartificialphotosynthesis
_version_ 1719078704767827968