Developing a Single-Cycle Infectious System to Study an ERV-K Retroviral Envelope

Thesis advisor: Welkin Johnson === Endogenous Retroviruses (ERVs) are “fossilized” retroviruses of a once exogenous retrovirus located in the genome of extant vertebrates. Retroviral infection results in a provirus integration into the host genome. An infection of a germline cell could lead to the p...

Full description

Bibliographic Details
Main Author: Akleh, Rana Elias
Format: Others
Language:English
Published: Boston College 2017
Subjects:
Online Access:http://hdl.handle.net/2345/bc-ir:107695
id ndltd-BOSTON-oai-dlib.bc.edu-bc-ir_107695
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic Endogenous Retroviruses
HERV-K
Human endogenous retrovirus type-K
Retroviral Envelope
rhERV-K
spellingShingle Endogenous Retroviruses
HERV-K
Human endogenous retrovirus type-K
Retroviral Envelope
rhERV-K
Akleh, Rana Elias
Developing a Single-Cycle Infectious System to Study an ERV-K Retroviral Envelope
description Thesis advisor: Welkin Johnson === Endogenous Retroviruses (ERVs) are “fossilized” retroviruses of a once exogenous retrovirus located in the genome of extant vertebrates. Retroviral infection results in a provirus integration into the host genome. An infection of a germline cell could lead to the provirus potentially being inherited by the offspring of the infected individual. Once in the genome, the provirus becomes subject to evolutionary processes and can become either lost or fixed in a population, remaining as “fossils” long after the exogenous retrovirus has gone extinct23. Notably, 8% of the human genome consists of ERVs30. Human Endogenous Retrovirus Type K (HERV-K)(HML-2) family is of particular interest. HERV-K integrations are as old as 30-35 million years, endogenizing before the separation of humans and Old World Monkeys. However, there are human specific insertions, some as young as 150,000 – 250,000 years, making them the youngest insertion in the human genome. There are over 90 insertions in the human genome; the bulk is shared by all humans44,47. Transcripts of HERV-K genes are upregulated in multiple cancer and tumor cell lines 14,39,46, as well as in HIV-1 infected patients 7,11,29. Just as there are human specific insertions of ERV-K, there are also Old World Monkey specific insertions44. I have identified an intact endogenous retroviral envelope open reading frame on chromosome 12 of the rhesus macaque genome. This viral envelope-encoding sequence, which I refer to as rhERV-K env, retains all the canonical features of a retroviral Env protein. An alignment between rhERV-K env and a consensus sequence of HERV-K, HERV-Kcon env, shows a 70% amino acid sequence identity. For experimental purposes, reconstructed HERV-K envelopes have been incorporated into virions of Human Immunodeficiency virus (HIV-1)19,26,49, Murine Leukemia Virus (MLV)12, and Vesicular stomatitis Virus (VSV)26,41,49. While these approaches have illuminated some aspects of HERV-K Env-mediated entry, to date a cell-surface receptor has not been identified for any ERV-K Env. This could be due to its low infectivity levels12,26,49, its seemingly broad cell tropism limiting identification of null cell lines26,49, or possibly the HERV-K consensus reconstructions are not an accurate representation of the progenitor HERV-K virus. I am interested in understanding how the ERV-K retrovirus accessed the human germline (some 150,000 – 250,000 years ago). To do this, I focused specifically on the envelope proteins of HERV-K and rhERV-K, with the goal of analyzing the ERV-K entry process. The identification and inclusion of rhERV-K Env in this study is meant to circumvent the possibility that the previously described consensus reconstructions of human HERV-K Env are not representative, and may also provide a means to compare the endogenization process in the human/ape and old-world monkey lineages. I focused on developing two systems for single-cycle infection, one based on Mason-Pfizer Monkey Virus (MPMV) (which has not been done before), and a second based on MLV, which has previously been reported on. MPMV, like HERV-K, is a betaretrovirus, and I reasoned that possibly using a betaretrovirus would overcome some of the low-infectivity issues associated with prior attempts using HIV and MLV. To develop a system for examining function of the ERV-K Env proteins, I addressed 3 issues: 1. Are the HERV-K Env and rhERV-K Env proteins expressed and properly processed? 2. Can they be incorporated into virions of a heterologous virus? 3. Are ERV-K pseudotyped virions infectious? I have answered these questions in the following thesis. === Thesis (MS) — Boston College, 2017. === Submitted to: Boston College. Graduate School of Arts and Sciences. === Discipline: Biology.
author Akleh, Rana Elias
author_facet Akleh, Rana Elias
author_sort Akleh, Rana Elias
title Developing a Single-Cycle Infectious System to Study an ERV-K Retroviral Envelope
title_short Developing a Single-Cycle Infectious System to Study an ERV-K Retroviral Envelope
title_full Developing a Single-Cycle Infectious System to Study an ERV-K Retroviral Envelope
title_fullStr Developing a Single-Cycle Infectious System to Study an ERV-K Retroviral Envelope
title_full_unstemmed Developing a Single-Cycle Infectious System to Study an ERV-K Retroviral Envelope
title_sort developing a single-cycle infectious system to study an erv-k retroviral envelope
publisher Boston College
publishDate 2017
url http://hdl.handle.net/2345/bc-ir:107695
work_keys_str_mv AT aklehranaelias developingasinglecycleinfectioussystemtostudyanervkretroviralenvelope
_version_ 1719079673705529344
spelling ndltd-BOSTON-oai-dlib.bc.edu-bc-ir_1076952019-05-10T07:38:37Z Developing a Single-Cycle Infectious System to Study an ERV-K Retroviral Envelope Akleh, Rana Elias Thesis advisor: Welkin Johnson Text thesis 2017 Boston College English electronic application/pdf Endogenous Retroviruses (ERVs) are “fossilized” retroviruses of a once exogenous retrovirus located in the genome of extant vertebrates. Retroviral infection results in a provirus integration into the host genome. An infection of a germline cell could lead to the provirus potentially being inherited by the offspring of the infected individual. Once in the genome, the provirus becomes subject to evolutionary processes and can become either lost or fixed in a population, remaining as “fossils” long after the exogenous retrovirus has gone extinct23. Notably, 8% of the human genome consists of ERVs30. Human Endogenous Retrovirus Type K (HERV-K)(HML-2) family is of particular interest. HERV-K integrations are as old as 30-35 million years, endogenizing before the separation of humans and Old World Monkeys. However, there are human specific insertions, some as young as 150,000 – 250,000 years, making them the youngest insertion in the human genome. There are over 90 insertions in the human genome; the bulk is shared by all humans44,47. Transcripts of HERV-K genes are upregulated in multiple cancer and tumor cell lines 14,39,46, as well as in HIV-1 infected patients 7,11,29. Just as there are human specific insertions of ERV-K, there are also Old World Monkey specific insertions44. I have identified an intact endogenous retroviral envelope open reading frame on chromosome 12 of the rhesus macaque genome. This viral envelope-encoding sequence, which I refer to as rhERV-K env, retains all the canonical features of a retroviral Env protein. An alignment between rhERV-K env and a consensus sequence of HERV-K, HERV-Kcon env, shows a 70% amino acid sequence identity. For experimental purposes, reconstructed HERV-K envelopes have been incorporated into virions of Human Immunodeficiency virus (HIV-1)19,26,49, Murine Leukemia Virus (MLV)12, and Vesicular stomatitis Virus (VSV)26,41,49. While these approaches have illuminated some aspects of HERV-K Env-mediated entry, to date a cell-surface receptor has not been identified for any ERV-K Env. This could be due to its low infectivity levels12,26,49, its seemingly broad cell tropism limiting identification of null cell lines26,49, or possibly the HERV-K consensus reconstructions are not an accurate representation of the progenitor HERV-K virus. I am interested in understanding how the ERV-K retrovirus accessed the human germline (some 150,000 – 250,000 years ago). To do this, I focused specifically on the envelope proteins of HERV-K and rhERV-K, with the goal of analyzing the ERV-K entry process. The identification and inclusion of rhERV-K Env in this study is meant to circumvent the possibility that the previously described consensus reconstructions of human HERV-K Env are not representative, and may also provide a means to compare the endogenization process in the human/ape and old-world monkey lineages. I focused on developing two systems for single-cycle infection, one based on Mason-Pfizer Monkey Virus (MPMV) (which has not been done before), and a second based on MLV, which has previously been reported on. MPMV, like HERV-K, is a betaretrovirus, and I reasoned that possibly using a betaretrovirus would overcome some of the low-infectivity issues associated with prior attempts using HIV and MLV. To develop a system for examining function of the ERV-K Env proteins, I addressed 3 issues: 1. Are the HERV-K Env and rhERV-K Env proteins expressed and properly processed? 2. Can they be incorporated into virions of a heterologous virus? 3. Are ERV-K pseudotyped virions infectious? I have answered these questions in the following thesis. Endogenous Retroviruses HERV-K Human endogenous retrovirus type-K Retroviral Envelope rhERV-K Copyright is held by the author. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0). Thesis (MS) — Boston College, 2017. Submitted to: Boston College. Graduate School of Arts and Sciences. Discipline: Biology. http://hdl.handle.net/2345/bc-ir:107695