Scalable Nanophotonic Light Management Design for Solar Cells

The current trend in wide adoption of solar energy is encouraging in the context of current projections of increasing energy consumption and the dire need to decrease carbon emissions. The solar industry has expanded due to scientific advances in the power conversion efficiency of solar modules. In...

Full description

Bibliographic Details
Main Author: Bukowsky, Colton Robert
Format: Others
Language:en
Published: 2019
Online Access:https://thesis.library.caltech.edu/11593/14/CRBukowsky2019.pdf
Bukowsky, Colton Robert (2019) Scalable Nanophotonic Light Management Design for Solar Cells. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/J5FG-1B48. https://resolver.caltech.edu/CaltechTHESIS:06012019-002405475 <https://resolver.caltech.edu/CaltechTHESIS:06012019-002405475>
id ndltd-CALTECH-oai-thesis.library.caltech.edu-11593
record_format oai_dc
spelling ndltd-CALTECH-oai-thesis.library.caltech.edu-115932021-05-26T05:01:28Z https://thesis.library.caltech.edu/11593/ Scalable Nanophotonic Light Management Design for Solar Cells Bukowsky, Colton Robert The current trend in wide adoption of solar energy is encouraging in the context of current projections of increasing energy consumption and the dire need to decrease carbon emissions. The solar industry has expanded due to scientific advances in the power conversion efficiency of solar modules. In order maintain a rapid pace of adoption and further decrease electricity costs, converting each photon becomes increasingly important. This work focuses on nanophotonic approaches to increasing the power conversion efficiency of different solar photovoltaic designs. The projects voluntarily impose certain design constraints in order to be compatible with the large scale manufacturing needed by the solar industry. A focus was given to designs that can leverage the promising technology of nanoimprint lithography. Amorphous silicon tandem cells with embedded nanophotonic patterning attempted to increase absorption while minimizing materials and time costs. Simulated designs of Copper Indium Gallium Diselenide absorbers showed that the management of excited carriers is equally as important as light management in decreasingly thin absorber layers. Near perfect anti-reflection structures were given a detailed physical analysis to better describe the fundamental physics of near zero reflection due to nanocones printed on solar cell encapsulation glass. Experimental results agreed with the theoretical analysis, and showed that these nanostructures further increased absorbed photocurrent by trapping light in the encapsulation glass. Finally, a unique device in the form of a tandem luminescent solar concentrator/silicon solar module was proposed and analyzed as a low cost and adaptable technology for increased solar power conversion efficiency. Key to this design was discovery of new, near-perfect components for light management. Exciting and innovative designs are proposed to control the light-matter interaction within these devices. Study of a photonic luminescent solar concentrator predicted that luminescence can be trapped in photonic crystal slab waveguides with near zero loss. Rigorous experimental efforts to characterize a multitude of near-perfect samples help guide these designs toward their final goals. 2019 Thesis NonPeerReviewed application/pdf en other https://thesis.library.caltech.edu/11593/14/CRBukowsky2019.pdf Bukowsky, Colton Robert (2019) Scalable Nanophotonic Light Management Design for Solar Cells. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/J5FG-1B48. https://resolver.caltech.edu/CaltechTHESIS:06012019-002405475 <https://resolver.caltech.edu/CaltechTHESIS:06012019-002405475> https://resolver.caltech.edu/CaltechTHESIS:06012019-002405475 CaltechTHESIS:06012019-002405475 10.7907/J5FG-1B48
collection NDLTD
language en
format Others
sources NDLTD
description The current trend in wide adoption of solar energy is encouraging in the context of current projections of increasing energy consumption and the dire need to decrease carbon emissions. The solar industry has expanded due to scientific advances in the power conversion efficiency of solar modules. In order maintain a rapid pace of adoption and further decrease electricity costs, converting each photon becomes increasingly important. This work focuses on nanophotonic approaches to increasing the power conversion efficiency of different solar photovoltaic designs. The projects voluntarily impose certain design constraints in order to be compatible with the large scale manufacturing needed by the solar industry. A focus was given to designs that can leverage the promising technology of nanoimprint lithography. Amorphous silicon tandem cells with embedded nanophotonic patterning attempted to increase absorption while minimizing materials and time costs. Simulated designs of Copper Indium Gallium Diselenide absorbers showed that the management of excited carriers is equally as important as light management in decreasingly thin absorber layers. Near perfect anti-reflection structures were given a detailed physical analysis to better describe the fundamental physics of near zero reflection due to nanocones printed on solar cell encapsulation glass. Experimental results agreed with the theoretical analysis, and showed that these nanostructures further increased absorbed photocurrent by trapping light in the encapsulation glass. Finally, a unique device in the form of a tandem luminescent solar concentrator/silicon solar module was proposed and analyzed as a low cost and adaptable technology for increased solar power conversion efficiency. Key to this design was discovery of new, near-perfect components for light management. Exciting and innovative designs are proposed to control the light-matter interaction within these devices. Study of a photonic luminescent solar concentrator predicted that luminescence can be trapped in photonic crystal slab waveguides with near zero loss. Rigorous experimental efforts to characterize a multitude of near-perfect samples help guide these designs toward their final goals.
author Bukowsky, Colton Robert
spellingShingle Bukowsky, Colton Robert
Scalable Nanophotonic Light Management Design for Solar Cells
author_facet Bukowsky, Colton Robert
author_sort Bukowsky, Colton Robert
title Scalable Nanophotonic Light Management Design for Solar Cells
title_short Scalable Nanophotonic Light Management Design for Solar Cells
title_full Scalable Nanophotonic Light Management Design for Solar Cells
title_fullStr Scalable Nanophotonic Light Management Design for Solar Cells
title_full_unstemmed Scalable Nanophotonic Light Management Design for Solar Cells
title_sort scalable nanophotonic light management design for solar cells
publishDate 2019
url https://thesis.library.caltech.edu/11593/14/CRBukowsky2019.pdf
Bukowsky, Colton Robert (2019) Scalable Nanophotonic Light Management Design for Solar Cells. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/J5FG-1B48. https://resolver.caltech.edu/CaltechTHESIS:06012019-002405475 <https://resolver.caltech.edu/CaltechTHESIS:06012019-002405475>
work_keys_str_mv AT bukowskycoltonrobert scalablenanophotoniclightmanagementdesignforsolarcells
_version_ 1719405873750605824