Extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués

Cette thèse aborde le problème de l'extraction non supervisée des réseaux linéiques (routes, rivières, etc.) à partir d'images satellitaires et aériennes. Nous utilisons des processus objet, ou processus ponctuels marqués, comme modèles a priori. Ces modèles permettent de bénéficier de l&#...

Full description

Bibliographic Details
Main Author: Lacoste, Caroline
Language:FRE
Published: Université de Nice Sophia-Antipolis 2004
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00261397
http://tel.archives-ouvertes.fr/docs/00/26/13/97/PDF/THESE_CAROLINE_LACOSTE.pdf
id ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00261397
record_format oai_dc
spelling ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-002613972013-01-07T18:31:13Z http://tel.archives-ouvertes.fr/tel-00261397 http://tel.archives-ouvertes.fr/docs/00/26/13/97/PDF/THESE_CAROLINE_LACOSTE.pdf Extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués Lacoste, Caroline [INFO:INFO_HC] Computer Science/Human-Computer Interaction géométrie stochastique processus ponctuels marqués recuit simulé MCMC à sauts réversibles extraction de réseaux linéiques images satéllitaires et aériennes Cette thèse aborde le problème de l'extraction non supervisée des réseaux linéiques (routes, rivières, etc.) à partir d'images satellitaires et aériennes. Nous utilisons des processus objet, ou processus ponctuels marqués, comme modèles a priori. Ces modèles permettent de bénéficier de l'apport d'un cadre stochastique (robustesse au bruit, corpus algorithmique, etc.) tout en manipulant des contraintes géométriques fortes. Un recuit simulé sur un algorithme de type Monte Carlo par Chaîne de Markov (MCMC) permet une optimisation globale sur l'espace des configurations d'objets, indépendamment de l'initialisation.<br />Nous proposons tout d'abord une modélisation du réseau linéique par un processus dont les objets sont des segments interagissant entre eux. Le modèle a priori est construit de façon à exploiter au mieux la topologie du réseau recherche au travers de potentiels fondés sur la qualité de chaque interaction. Les propriétés radiométriques sont prises en compte dans un terme d'attache aux données fondé sur des mesures statistiques.<br />Nous étendons ensuite cette modélisation à des objets plus complexes. La manipulation de lignes brisées permet une extraction plus précise du réseau et améliore la détection des bifurcations.<br />Enfin, nous proposons une modélisation hiérarchique des réseaux hydrographiques dans laquelle les affluents d'un fleuve sont modélisés par un processus de lignes brisées dans le voisinage de ce fleuve.<br />Pour chacun des modèles, nous accélérons la convergence de l'algorithme MCMC par l'ajout de perturbations adaptées.<br />La pertinence de cette modélisation par processus objet est vérifiée sur des images satellitaires et aériennes, optiques et radar. 2004-09-30 FRE PhD thesis Université de Nice Sophia-Antipolis
collection NDLTD
language FRE
sources NDLTD
topic [INFO:INFO_HC] Computer Science/Human-Computer Interaction
géométrie stochastique
processus ponctuels marqués
recuit simulé
MCMC à sauts réversibles
extraction de réseaux linéiques
images satéllitaires et aériennes
spellingShingle [INFO:INFO_HC] Computer Science/Human-Computer Interaction
géométrie stochastique
processus ponctuels marqués
recuit simulé
MCMC à sauts réversibles
extraction de réseaux linéiques
images satéllitaires et aériennes
Lacoste, Caroline
Extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués
description Cette thèse aborde le problème de l'extraction non supervisée des réseaux linéiques (routes, rivières, etc.) à partir d'images satellitaires et aériennes. Nous utilisons des processus objet, ou processus ponctuels marqués, comme modèles a priori. Ces modèles permettent de bénéficier de l'apport d'un cadre stochastique (robustesse au bruit, corpus algorithmique, etc.) tout en manipulant des contraintes géométriques fortes. Un recuit simulé sur un algorithme de type Monte Carlo par Chaîne de Markov (MCMC) permet une optimisation globale sur l'espace des configurations d'objets, indépendamment de l'initialisation.<br />Nous proposons tout d'abord une modélisation du réseau linéique par un processus dont les objets sont des segments interagissant entre eux. Le modèle a priori est construit de façon à exploiter au mieux la topologie du réseau recherche au travers de potentiels fondés sur la qualité de chaque interaction. Les propriétés radiométriques sont prises en compte dans un terme d'attache aux données fondé sur des mesures statistiques.<br />Nous étendons ensuite cette modélisation à des objets plus complexes. La manipulation de lignes brisées permet une extraction plus précise du réseau et améliore la détection des bifurcations.<br />Enfin, nous proposons une modélisation hiérarchique des réseaux hydrographiques dans laquelle les affluents d'un fleuve sont modélisés par un processus de lignes brisées dans le voisinage de ce fleuve.<br />Pour chacun des modèles, nous accélérons la convergence de l'algorithme MCMC par l'ajout de perturbations adaptées.<br />La pertinence de cette modélisation par processus objet est vérifiée sur des images satellitaires et aériennes, optiques et radar.
author Lacoste, Caroline
author_facet Lacoste, Caroline
author_sort Lacoste, Caroline
title Extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués
title_short Extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués
title_full Extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués
title_fullStr Extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués
title_full_unstemmed Extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués
title_sort extraction de réseaux linéiques à partir d'images satellitaires et aériennes par processus ponctuels marqués
publisher Université de Nice Sophia-Antipolis
publishDate 2004
url http://tel.archives-ouvertes.fr/tel-00261397
http://tel.archives-ouvertes.fr/docs/00/26/13/97/PDF/THESE_CAROLINE_LACOSTE.pdf
work_keys_str_mv AT lacostecaroline extractiondereseauxlineiquesapartirdimagessatellitairesetaeriennesparprocessusponctuelsmarques
_version_ 1716452742454575104