L'application cotangente des surfaces de type général

Cette thèse est une étude des surfaces de type général dont le fibré cotangent est engendré par ses sections globales et dont l'irrégularité q est supérieure ou égale à 4.<br />L'objet et le moyen de cette étude est l'application cotangente qui est un morphisme du projectivisé d...

Full description

Bibliographic Details
Main Author: Roulleau, Xavier
Language:FRE
Published: Université d'Angers 2007
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00346502
http://tel.archives-ouvertes.fr/docs/00/34/65/02/PDF/theseRoulleau9oct.pdf
Description
Summary:Cette thèse est une étude des surfaces de type général dont le fibré cotangent est engendré par ses sections globales et dont l'irrégularité q est supérieure ou égale à 4.<br />L'objet et le moyen de cette étude est l'application cotangente qui est un morphisme du projectivisé du fibré cotangent dans l'espace projectif de dimension q-1. Nous étudions le degré de ce morphisme et le degré de son image.<br />Le fibré cotangent est ample si et seulement s'il n'existe pas de fibre de l'application cotangente de dimension strictement positive.<br />Si le fibré cotangent n'est pas ample, alors il existe une courbe C contenue dans la surface et il existe une section de C dans le projectivisé du fibré cotangent qui est contractée en un point par l'application cotangente. Une telle courbe C est qualifiée de courbe non-ample.<br />Nous donnons une classification des courbes non-amples de la surface suivant leur auto-intersection. Nous donnons ensuite une classification des surfaces possédant une infinité de courbes non-amples.<br />Un exemple pour lequel l'application cotangente intervient naturellement est celui des surfaces de Fano. Nous étudions le diviseur de ramification de leur application cotangente ainsi que leurs courbes non-amples.<br />Cette étude mène à la surface de Fano de la cubique de Fermat qui possède 30 courbes non-amples et dont nous détaillons les propriétés.