Estimation Statistique En Grande Dimension, Parcimonie et Inégalités D'Oracle

Dans cette thèse nous traitons deux sujets. Le premier sujet concerne l'apprentissage statistique en grande dimension, i.e. les problèmes où le nombre de paramètres potentiels est beaucoup plus grand que le nombre de données à disposition. Dans ce contexte, l'hypothèse généralement adoptée...

Full description

Bibliographic Details
Main Author: Lounici, Karim
Language:ENG
Published: Université Paris-Diderot - Paris VII 2009
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00435917
http://tel.archives-ouvertes.fr/docs/00/43/59/17/PDF/These_Lounici_Karim.pdf
Description
Summary:Dans cette thèse nous traitons deux sujets. Le premier sujet concerne l'apprentissage statistique en grande dimension, i.e. les problèmes où le nombre de paramètres potentiels est beaucoup plus grand que le nombre de données à disposition. Dans ce contexte, l'hypothèse généralement adoptée est que le nombre de paramètres intervenant effectivement dans le modèle est petit par rapport au nombre total de paramètres potentiels et aussi par rapport au nombre de données. Cette hypothèse est appelée ``\emph{sparsity assumption}''. Nous étudions les propriétés statistiques de deux types de procédures : les procédures basées sur la minimisation du risque empirique muni d'une pénalité $l_{1}$ sur l'ensemble des paramètres potentiels et les procédures à poids exponentiels. Le second sujet que nous abordons concerne l'étude de procédures d'agrégation dans un modèle de densité. Nous établissons des inégalités oracles pour la norme $L^{\pi}$, $1\leqslant \pi \leqslant \infty$. Nous proposons ensuite une application à l'estimation minimax et adaptative en la régularité de la densité.