Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide

Mon travail de thèse a pour objet l'étude de fluides anisotropes en rotation rapide dans $\mathbb{R}^3$, quand la viscosité tend vers zéro avec le nombre de Rossby $\varepsilon > 0$. J'ai démontré en particulier des résultats d'existence globale pour des données arbitrairement gran...

Full description

Bibliographic Details
Main Author: Ngo, Van-Sang
Language:FRE
Published: Université Paris Sud - Paris XI 2009
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00466698
http://tel.archives-ouvertes.fr/docs/00/46/66/98/PDF/TheseVSNgo.pdf
id ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00466698
record_format oai_dc
collection NDLTD
language FRE
sources NDLTD
topic [MATH] Mathematics
Navier-Stokes
Fluides en rotation rapide
Fluides géophysiques
Fluides de Grade deux
Existence globale
Anisotropie
Estimations de Strichartz
Espaces anisotropes
Analyticité
spellingShingle [MATH] Mathematics
Navier-Stokes
Fluides en rotation rapide
Fluides géophysiques
Fluides de Grade deux
Existence globale
Anisotropie
Estimations de Strichartz
Espaces anisotropes
Analyticité
Ngo, Van-Sang
Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide
description Mon travail de thèse a pour objet l'étude de fluides anisotropes en rotation rapide dans $\mathbb{R}^3$, quand la viscosité tend vers zéro avec le nombre de Rossby $\varepsilon > 0$. J'ai démontré en particulier des résultats d'existence globale pour des données arbitrairement grandes quand le nombre de Rossby $\varepsilon$ tend vers zéro et j'ai mis en lumière le rôle joué par l'effet dispersif. Dans la dernière partie de la thèse, j'ai démontré l'analyticité de la solution globale du système des fluides de grade deux pour des données initiales analytiques petites. Dans la première partie, j'ai considéré les équations de Navier-Stokes avec terme de rotation $\frac{u\wedge e_3}{\varepsilon}$, et avec viscosité verticale nulle et viscosité horizontale petite de l'ordre de $\varepsilon^\alpha$, avec $\alpha > 0$ dans le cas où le système limite, quand $\varepsilon$ tend vers zéro, est nul. J'ai démontré l'existence globale de la solution forte pour des données initiales grandes, quand $\varepsilon > 0$ est suffisamment petit. J'ai suivi la méthode introduite par J.-Y. Chemin, B. Desjardins, I. Gallagher et E. Grenier, c'est-à-dire, j'ai décomposé le système de départ en un système linéaire avec donnée initiale plus régulière et un système non-linéaire avec donnée initiale petite. Pour le système linéaire, une grande partie du travail consiste à adapter les estimations de Strichartz et à trouver de nouvelles estimations qui tiennent compte de la viscosité petite. Pour le système non-linéaire, j'ai utilisé une méthode de ``bootstrap'', plus délicate que dans le cas classique, à cause de la petitesse de la viscosité. Toujours dans cette première partie, j'ai également considéré le cas où le système limite n'est pas nul. Pour ce cas, j'ai montré, en ajoutant un terme de ``friction'' aux équations considérées, de bonnes estimations dissipatives et surtout de bonnes propriétés pour le système limite, ce qui m'a permis de montrer l'existence globale de solutions fortes. Dans le dernier paragraphe de cette partie, j'ai étudié une application importante de la méthode ci-dessus aux fluides en rotation rapide entre deux plaques infinies dans le cas la viscosité horizontale est petite, de l'ordre de $\varepsilon^\alpha$, $\alpha > 0$. La deuxième partie est un travail en collaboration avec Frédéric Charve (Université Paris 12 - Val de Marne). Il s'agit de l'étude des équations primitives dans $\mathbb{R}^3$ avec, comme précédemment, viscosité verticale nulle et viscosité horizontale de taille $\varepsilon^\alpha$, $\alpha > 0$. Nous avons développé la méthode de la première partie dans le cadre des équations primitives en adaptant au cas anisotrope les calculs faits par F. Charve dans le cas isotrope. La troisième partie est consacrée à l'étude du système de la magnéto-hydrodynamique en rotation rapide dans $\mathbb{R}^3$ dans le cas anisotrope. Je démontre d'abord des résultats d'existence locale (globale pour des données petites) et d'unicité de la solution forte. Avec des paramètres bien choisis, j'ai pu appliquer la méthode développée dans les deux premières parties et montrer que le système de la magnéto-hydrodynamique est globalement bien posé pour des données grandes. Finalement, dans la dernière partie de la thèse, j'ai considéré le problème de propagation de régularité pour le système des fluides de grade deux sur le tore $\mathbb{T}^3$. En utilisant une technique développée par J.-Y. Chemin, j'ai montré que, si la donnée initiale est petite dans une classe de Gevrey appropriée, la solution du système de fluides de grade deux existe globalement en temps, reste dans une certaine classe de Gevrey pour tout temps positif et est donc analytique.
author Ngo, Van-Sang
author_facet Ngo, Van-Sang
author_sort Ngo, Van-Sang
title Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide
title_short Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide
title_full Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide
title_fullStr Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide
title_full_unstemmed Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide
title_sort effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide
publisher Université Paris Sud - Paris XI
publishDate 2009
url http://tel.archives-ouvertes.fr/tel-00466698
http://tel.archives-ouvertes.fr/docs/00/46/66/98/PDF/TheseVSNgo.pdf
work_keys_str_mv AT ngovansang effetdispersifpourlesfluidesanisotropesavecviscositeevanescenteenrotationrapide
_version_ 1716451387512979456
spelling ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-004666982013-01-07T18:09:05Z http://tel.archives-ouvertes.fr/tel-00466698 http://tel.archives-ouvertes.fr/docs/00/46/66/98/PDF/TheseVSNgo.pdf Effet dispersif pour les fluides anisotropes avec viscosité évanescente en rotation rapide Ngo, Van-Sang [MATH] Mathematics Navier-Stokes Fluides en rotation rapide Fluides géophysiques Fluides de Grade deux Existence globale Anisotropie Estimations de Strichartz Espaces anisotropes Analyticité Mon travail de thèse a pour objet l'étude de fluides anisotropes en rotation rapide dans $\mathbb{R}^3$, quand la viscosité tend vers zéro avec le nombre de Rossby $\varepsilon > 0$. J'ai démontré en particulier des résultats d'existence globale pour des données arbitrairement grandes quand le nombre de Rossby $\varepsilon$ tend vers zéro et j'ai mis en lumière le rôle joué par l'effet dispersif. Dans la dernière partie de la thèse, j'ai démontré l'analyticité de la solution globale du système des fluides de grade deux pour des données initiales analytiques petites. Dans la première partie, j'ai considéré les équations de Navier-Stokes avec terme de rotation $\frac{u\wedge e_3}{\varepsilon}$, et avec viscosité verticale nulle et viscosité horizontale petite de l'ordre de $\varepsilon^\alpha$, avec $\alpha > 0$ dans le cas où le système limite, quand $\varepsilon$ tend vers zéro, est nul. J'ai démontré l'existence globale de la solution forte pour des données initiales grandes, quand $\varepsilon > 0$ est suffisamment petit. J'ai suivi la méthode introduite par J.-Y. Chemin, B. Desjardins, I. Gallagher et E. Grenier, c'est-à-dire, j'ai décomposé le système de départ en un système linéaire avec donnée initiale plus régulière et un système non-linéaire avec donnée initiale petite. Pour le système linéaire, une grande partie du travail consiste à adapter les estimations de Strichartz et à trouver de nouvelles estimations qui tiennent compte de la viscosité petite. Pour le système non-linéaire, j'ai utilisé une méthode de ``bootstrap'', plus délicate que dans le cas classique, à cause de la petitesse de la viscosité. Toujours dans cette première partie, j'ai également considéré le cas où le système limite n'est pas nul. Pour ce cas, j'ai montré, en ajoutant un terme de ``friction'' aux équations considérées, de bonnes estimations dissipatives et surtout de bonnes propriétés pour le système limite, ce qui m'a permis de montrer l'existence globale de solutions fortes. Dans le dernier paragraphe de cette partie, j'ai étudié une application importante de la méthode ci-dessus aux fluides en rotation rapide entre deux plaques infinies dans le cas la viscosité horizontale est petite, de l'ordre de $\varepsilon^\alpha$, $\alpha > 0$. La deuxième partie est un travail en collaboration avec Frédéric Charve (Université Paris 12 - Val de Marne). Il s'agit de l'étude des équations primitives dans $\mathbb{R}^3$ avec, comme précédemment, viscosité verticale nulle et viscosité horizontale de taille $\varepsilon^\alpha$, $\alpha > 0$. Nous avons développé la méthode de la première partie dans le cadre des équations primitives en adaptant au cas anisotrope les calculs faits par F. Charve dans le cas isotrope. La troisième partie est consacrée à l'étude du système de la magnéto-hydrodynamique en rotation rapide dans $\mathbb{R}^3$ dans le cas anisotrope. Je démontre d'abord des résultats d'existence locale (globale pour des données petites) et d'unicité de la solution forte. Avec des paramètres bien choisis, j'ai pu appliquer la méthode développée dans les deux premières parties et montrer que le système de la magnéto-hydrodynamique est globalement bien posé pour des données grandes. Finalement, dans la dernière partie de la thèse, j'ai considéré le problème de propagation de régularité pour le système des fluides de grade deux sur le tore $\mathbb{T}^3$. En utilisant une technique développée par J.-Y. Chemin, j'ai montré que, si la donnée initiale est petite dans une classe de Gevrey appropriée, la solution du système de fluides de grade deux existe globalement en temps, reste dans une certaine classe de Gevrey pour tout temps positif et est donc analytique. 2009-10-07 FRE PhD thesis Université Paris Sud - Paris XI