Espace de modules de G2-fibrés principaux sur une courbe algébrique

L'objet de cette thèse est l'étude de l'espace de modules des G2-fibrés principaux sur une courbe complexe projective connexe lisse, où G2 désigne le groupe de Lie exceptionnel de plus petit rang. Le groupe G2 est caractérisé via trois approches différentes, la première étant celle où...

Full description

Bibliographic Details
Main Author: Gregoire, Chloé
Language:FRE
Published: Université Montpellier II - Sciences et Techniques du Languedoc 2010
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00539858
http://tel.archives-ouvertes.fr/docs/00/53/98/58/PDF/mainManuscritTHESE.pdf
Description
Summary:L'objet de cette thèse est l'étude de l'espace de modules des G2-fibrés principaux sur une courbe complexe projective connexe lisse, où G2 désigne le groupe de Lie exceptionnel de plus petit rang. Le groupe G2 est caractérisé via trois approches différentes, la première étant celle où G2 est défini comme le groupe des automorphismes de l'algèbre complexe des octaves de Cayley. Les différentes réductions et extensions que peut admettre un G2-fibré principal sont étudiées ainsi que la relation entre la stabilité d'un G2-fibré principal et celle du fibré vectoriel qui lui est associé. L'espace de modules des G2-fibrés principaux semi-stables est analysé. Nous obtenons notamment une caractérisation de son lieu lisse, une décomposition explicite de son lieu singulier en trois composantes connexes et une analyse de l'espace de Verlinde de niveau 1 pour le groupe G2.