Problèmes inverses et simulations numériques en viscoélasticité 3D.

Dans cette thèse, nous abordons plusieurs problèmes mathématiques et numériques relatifs aux équations de la viscoélasticité en trois dimensions. Dans la première partie, nous considérons le système linéaire et nous nous intéressons au problème inverse de récupération d'un coefficient viscoélas...

Full description

Bibliographic Details
Main Author: De Buhan, Maya
Language:FRE
Published: Université Pierre et Marie Curie - Paris VI 2010
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00552111
http://tel.archives-ouvertes.fr/docs/00/55/21/11/PDF/these.pdf
Description
Summary:Dans cette thèse, nous abordons plusieurs problèmes mathématiques et numériques relatifs aux équations de la viscoélasticité en trois dimensions. Dans la première partie, nous considérons le système linéaire et nous nous intéressons au problème inverse de récupération d'un coefficient viscoélastique. Pour ce système, nous démontrons une inégalité de Carleman (Chapitre 1) et un résultat de stabilité dans le prolongement unique (Chapitre 2). Nous utilisons ensuite ces résultats pour prouver deux inégalités de stabilité pour le problème inverse, l'une relative à une unique mesure interne et l'autre à une unique mesure sur une partie arbitrairement petite de la frontière (Chapitre 3). Finalement, nous proposons une méthode pour résoudre ce problème numériquement et présentons une application en imagerie médicale (Chapitre 4). Dans la deuxième partie, nous étudions le système de la viscoélasticité non linéaire. Nous présentons des méthodes numériques pour le résoudre et l'implémentation de ces dernières en trois dimensions sur des géométries complexes (Chapitre 5). Une application biomédicale à la simulation des déformations des structures cérébrales est ensuite décrite (Chapitre 6). Enfin, nous abordons une question de modélisation en proposant un modèle couplé viscoélastique/viscoplastique en grandes déformations (Chapitre7).