Défauts de vorticité dans un supraconducteur en présence d'impuretés

Cette thèse est consacrée à l'étude mathématique de quelques modèles suggérés par la théorie de la supraconductivité. Plus spécifiquement, nous étudions le modèle de Ginzburg-Landau simplifié (sans champ magnétique) en présence de condition de type Dirichlet ou du type degrés prescrits. Dans un...

Full description

Bibliographic Details
Main Author: Dos Santos, Mickaël
Language:FRE
Published: Université Claude Bernard - Lyon I 2010
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00556605
http://tel.archives-ouvertes.fr/docs/00/55/66/05/PDF/These-DosSantos-15_01_2011.pdf
id ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00556605
record_format oai_dc
spelling ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-005566052013-01-07T17:44:28Z http://tel.archives-ouvertes.fr/tel-00556605 http://tel.archives-ouvertes.fr/docs/00/55/66/05/PDF/These-DosSantos-15_01_2011.pdf Défauts de vorticité dans un supraconducteur en présence d'impuretés Dos Santos, Mickaël [MATH] Mathematics Supraconducteur dopé Théorie de Ginzburg-Landau Homogénéisation Terme de chevillage Pinning Emplacement des défauts de vorticité Cette thèse est consacrée à l'étude mathématique de quelques modèles suggérés par la théorie de la supraconductivité. Plus spécifiquement, nous étudions le modèle de Ginzburg-Landau simplifié (sans champ magnétique) en présence de condition de type Dirichlet ou du type degrés prescrits. Dans une première partie nous traitons le problème d'existence de minimiseurs locaux dans un domaine multiplement connexe du plan pour des conditions de type degrés prescrits. La deuxième partie traite l'effet d'un terme de chevillage dans l'énergie de Ginzburg-Landau (GL) bi-dimensionnelle en imposant une condition de type Dirichlet. Cette partie se décompose en trois chapitres. On commence par l'étude d'un terme de chevillage qui est étagé et qui prend une valeur différente de 1 uniquement en un nombre fixe de sous domaines (aussi appelés inclusions) dont la taille tend vers zéro. Dans le chapitre suivant, nous considérons le cas d'un terme de chevillage sans hypothèse de structure particulière dans le cas où la donnée au bord est de degré nul. Dans le dernier chapitre de la deuxième partie, nous traitons le cas d'un terme de chevillage étagé et uniformément distribué avec une condition de type Dirichlet de degré non nul. On montre que la vorticité est quantifiée et localisée dans les inclusions. La dernière partie s'intéresse à l'effet d'un terme de chevillage étagé dans un domaine tridimensionnel avec une condition de Dirichlet. Les résultats préliminaires que nous présentons permettent d'appréhender la manière dont les filaments de vorticité sont "tordus" par l'effet du terme de chevillage. 2010-12-09 FRE PhD thesis Université Claude Bernard - Lyon I
collection NDLTD
language FRE
sources NDLTD
topic [MATH] Mathematics
Supraconducteur dopé
Théorie de Ginzburg-Landau
Homogénéisation
Terme de chevillage
Pinning
Emplacement des défauts de vorticité
spellingShingle [MATH] Mathematics
Supraconducteur dopé
Théorie de Ginzburg-Landau
Homogénéisation
Terme de chevillage
Pinning
Emplacement des défauts de vorticité
Dos Santos, Mickaël
Défauts de vorticité dans un supraconducteur en présence d'impuretés
description Cette thèse est consacrée à l'étude mathématique de quelques modèles suggérés par la théorie de la supraconductivité. Plus spécifiquement, nous étudions le modèle de Ginzburg-Landau simplifié (sans champ magnétique) en présence de condition de type Dirichlet ou du type degrés prescrits. Dans une première partie nous traitons le problème d'existence de minimiseurs locaux dans un domaine multiplement connexe du plan pour des conditions de type degrés prescrits. La deuxième partie traite l'effet d'un terme de chevillage dans l'énergie de Ginzburg-Landau (GL) bi-dimensionnelle en imposant une condition de type Dirichlet. Cette partie se décompose en trois chapitres. On commence par l'étude d'un terme de chevillage qui est étagé et qui prend une valeur différente de 1 uniquement en un nombre fixe de sous domaines (aussi appelés inclusions) dont la taille tend vers zéro. Dans le chapitre suivant, nous considérons le cas d'un terme de chevillage sans hypothèse de structure particulière dans le cas où la donnée au bord est de degré nul. Dans le dernier chapitre de la deuxième partie, nous traitons le cas d'un terme de chevillage étagé et uniformément distribué avec une condition de type Dirichlet de degré non nul. On montre que la vorticité est quantifiée et localisée dans les inclusions. La dernière partie s'intéresse à l'effet d'un terme de chevillage étagé dans un domaine tridimensionnel avec une condition de Dirichlet. Les résultats préliminaires que nous présentons permettent d'appréhender la manière dont les filaments de vorticité sont "tordus" par l'effet du terme de chevillage.
author Dos Santos, Mickaël
author_facet Dos Santos, Mickaël
author_sort Dos Santos, Mickaël
title Défauts de vorticité dans un supraconducteur en présence d'impuretés
title_short Défauts de vorticité dans un supraconducteur en présence d'impuretés
title_full Défauts de vorticité dans un supraconducteur en présence d'impuretés
title_fullStr Défauts de vorticité dans un supraconducteur en présence d'impuretés
title_full_unstemmed Défauts de vorticité dans un supraconducteur en présence d'impuretés
title_sort défauts de vorticité dans un supraconducteur en présence d'impuretés
publisher Université Claude Bernard - Lyon I
publishDate 2010
url http://tel.archives-ouvertes.fr/tel-00556605
http://tel.archives-ouvertes.fr/docs/00/55/66/05/PDF/These-DosSantos-15_01_2011.pdf
work_keys_str_mv AT dossantosmickael defautsdevorticitedansunsupraconducteurenpresencedimpuretes
_version_ 1716396561009737728