Quelques applications de la théorie d'EDSR : EDDSR fractionnaire et propriétés de régularité des EDP-Intégrales
Dans la première partie de ma thèse, en adaptant l'idée de Jien et Ma (2010), l'objectif principal est étudier les équations différentielles doublement stochastiques rétrogrades, semi-linéaires ou nonlinéaires, régies par un mouvement brownien standard et un mouvement brownien fractionnair...
Main Author: | |
---|---|
Language: | ENG |
Published: |
Université de Bretagne occidentale - Brest
2011
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00904183 http://tel.archives-ouvertes.fr/docs/00/90/41/83/PDF/these_de_Shuai_JING.pdf |
Summary: | Dans la première partie de ma thèse, en adaptant l'idée de Jien et Ma (2010), l'objectif principal est étudier les équations différentielles doublement stochastiques rétrogrades, semi-linéaires ou nonlinéaires, régies par un mouvement brownien standard et un mouvement brownien fractionnaire indépendant, ainsi que les équations différentielles partielles stochastiques associées régies par le mouvement brownien fractionnaire. Pour le cas semi-linéaire, dans un papier en collaboration avec Jorge A. Leόn (CINVESTAV, Mexique), nous utilisons le calcul de Malliavin dans le cadre du mouvement brownien fractionnaire et la transformation de Girsanov anticipative. Pour le cas nonlinéaire, nous appliquons la transformation de Doss-Sussmann. Dans la deuxième partie nous étudions la régularité, à savoir la continuité de Lipschitz conjointe et la semiconcavité conjointe, de la solution de viscosité pour une classe générale d'équations aux dérivées partielles-intégrales non locales de type Hamilton-Jacobi-Bellman. Pour cette fin nous employons l'interprétation stochastique par une équation différentielle stochastique rétrograde contrôlée avec sauts, en appliquant du changement de temps pour le mouvement brownien et la transformation de Kulik pour la mesure aléatoire de Poisson. Notre travail est une généralisation des travaux de Buckdahn, Cannarsa et Quincampoix (2010) et Buckdahn, Huang et Li (2011). |
---|