Parabolische Randanfangswertaufgaben mit zufälliger Anfangs- und Randbedingung
Die vorliegende Arbeit beschäftigt sich mit dem Problem der zufälligen Wärmeausbreitung in beschränkten Gebieten. Dieses Phänomen wird dabei durch eine lineare parabolische Randanfangswertaufabe beschrieben, wobei die Anfangsbedingung und die Neumannrandbedingung als zufällige Felder mit gegebener W...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | German |
Published: |
2007
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:swb:ch1-200700576 https://monarch.qucosa.de/id/qucosa%3A18701 https://monarch.qucosa.de/api/qucosa%3A18701/attachment/ATT-0/ https://monarch.qucosa.de/api/qucosa%3A18701/attachment/ATT-1/ |
Summary: | Die vorliegende Arbeit beschäftigt sich mit dem Problem der
zufälligen Wärmeausbreitung in beschränkten Gebieten. Dieses
Phänomen wird dabei durch eine lineare parabolische
Randanfangswertaufabe beschrieben, wobei die Anfangsbedingung und
die Neumannrandbedingung als zufällige Felder mit gegebener
Wahrscheinlichkeitsverteilung angenommen werden. Des Weiteren werden
die zufälligen Felder als homogen und epsilon-korreliert mit
einer kleinen Korrelationslänge epsilon > 0 vorausgesetzt und
sollen glatte Realisierungen besitzen.
Zur Lösung der Randanfangswertaufgabe werden sowohl die klassische
Formulierung als auch die Variationsformulierung herangezogen und in
diesem Zusammenhang die Fourier Methode sowie die Finite-Elemente
Methode betrachtet. Die Finite-Elemente Methode und die
Fourier-Methode führen auf einen expliziten funktionalen
Zusammenhang zwischen der zufälligen Lösung der betrachteten
Randanfangswertaufgabe und den Einflussgrößen, so dass
Momentenfunktionen davon abgeleitet werden können.
Das Hauptinteresse dieser Arbeit liegt auf der Berechnung dieser
Momentenfunktionen, welche durch die gewählten Eigenschaften der
stochastischen Einflußgrößen bestimmt werden. Basierend auf dem
Finite-Elemente Ansatz bzw. dem Fourier Ansatz werden verschiedene
Approximationsmöglichkeiten insbesondere für die
Korrelationsfunktion erörtert. Des Weiteren wird die Möglichkeit der
Simulation des zufälligen Randanfangswertproblems betrachtet. Hierzu
wird zur Simulation der zufälligen Einflussgrößen auf die Theorie
von Moving Average Feldern zurückgegriffen.
Der letzte Teil der Arbeit widmet sich dem Vergleich der erhaltenen
analytischen Resultate anhand konkreter numerischer Beispiele. |
---|