Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente
In Geräten und Anlagen des Stromnetzes werden Steckverbinder mit hoher Stromtragfähigkeit eingesetzt, wenn bewegliche Teile kontaktiert werden oder Betriebsmittel mit geringem Aufwand montier- und demontierbar sein müssen. Die elektrische Verbindung der Leiter wird dabei oft mit federnden Kontaktele...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | deu |
Published: |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
2017
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215450 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215450 http://www.qucosa.de/fileadmin/data/qucosa/documents/21545/Dissertation_Gatzsche_2016.pdf |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-215450 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
deu |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Hochstromtechnik Steckverbindung Kontakt thermische Dimensionierung Kurzschluss Spannungs-Temperatur-Beziehung Langzeitverhalten Relaxation Schmierfett high-power engineering plug-in connection contact thermal design short-circuit voltage-temperature relation long-term performance relaxation grease ddc:621.3 rvk:ZN 4460 rvk:ZN 8110 |
spellingShingle |
Hochstromtechnik Steckverbindung Kontakt thermische Dimensionierung Kurzschluss Spannungs-Temperatur-Beziehung Langzeitverhalten Relaxation Schmierfett high-power engineering plug-in connection contact thermal design short-circuit voltage-temperature relation long-term performance relaxation grease ddc:621.3 rvk:ZN 4460 rvk:ZN 8110 Gatzsche, Michael Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente |
description |
In Geräten und Anlagen des Stromnetzes werden Steckverbinder mit hoher Stromtragfähigkeit eingesetzt, wenn bewegliche Teile kontaktiert werden oder Betriebsmittel mit geringem Aufwand montier- und demontierbar sein müssen. Die elektrische Verbindung der Leiter wird dabei oft mit federnden Kontaktelementen realisiert. Die Kontaktelemente müssen als Teil der Strombahn während der Lebensdauer des Geräts den Betriebsstrom im Kiloampere-Bereich und im Fehlerfall bis zu einige Sekunden lang den eine Größenordnung höheren Kurzschlussstrom tragen. In der vorliegenden Arbeit wurden Rechenmodelle für die innere Erwärmung von Hochstrom-Kontaktsystemen im stationären Dauerbetrieb und im transienten Kurzschlussfall entwickelt. Das elektrische und mechanische Langzeitverhalten im Temperaturbereich (105…180) °C wurde experimentell mit stromdurchflossenen, fettgeschmierten Modellsteckverbindern, die regelmäßig getrennt und neu gesteckt wurden, untersucht. Modellerstellung, Rechnungen und Versuche wurden beispielhaft mit Kontaktelementen vom Typ Multilam durchgeführt. Kontaktelemente und Leiter bestanden aus versilbertem Kupfer.
Für das stationäre Betriebsverhalten wurden die mit der analytischen Spannungs-Temperatur-Beziehung nach Kohlrausch berechneten Ergebnisse mit einem Erwärmungsversuch verifiziert. Die Temperaturdifferenz zwischen Kontaktelement und Leiter ist bei Standardanwendungen, wie in Schaltanlagen, mit ≤ 3 K sehr klein. Deshalb ist die Leitertemperatur als Zielgröße beim Dimensionieren der Dauerstrombelastbarkeit ausreichend. Bei Kurzschlussstrombelastung wurde im Kontaktsystem eine schnelle, räumlich unterschiedlich ausgeprägte Erwärmung numerisch berechnet. Leiter und Kontaktelement erwärmen sich kontinuierlich, wobei die mittlere Endübertemperatur im Kontaktelement aufgrund des kleineren stromtragenden Querschnitts eine Größenordnung höher ist. Die Kontakte führen bei 50 Hz-Wechselstrom aufgrund ihrer vernachlässigbaren Wärmekapazität 100 Hz-Temperaturzyklen aus. Dabei können die Maximaltemperaturen noch deutlich größer als die mittlere Temperatur der Kontaktelemente sein.
Im Langzeitversuch waren nach 16 000 h Betriebszeit bei 180 °C und regelmäßigen simulierten Steckvorgängen die Verbindungskräfte noch genügend groß, um die elektrischen Anforderungen eines neuen Kontaktsystems zu erfüllen. Allerdings führte bei einer Betriebstemperatur von 105 °C ein thermisch instabiles Schmierfett zum vorzeitigen elektrischen Ausfall eines Teils der Steckverbinder. === Switchgear and devices for the power grid use high-power connectors if moving parts have to be contacted or equipment shall be easily mountable and dismountable. The electrical connection of the conductors is often realized by spring-loaded contact elements. As part of the main circuit, contact elements must carry the full operating current in the kiloampere-range for the entire service life of the device. In case of a fault, the short-circuit current, which is one order of magnitude larger, has to be carried for up to several seconds. In this thesis, calculation models for the inner temperature rise of high-power contact systems in steady-state continuous operation, as well as for the transient short-circuit load case were developed. Electrical and mechanical long-term performance in the temperature range from 105 to 180 °C was experimentally investigated with current carrying, grease-lubricated model connectors which were regularly unplugged and replugged. Modelling, calculations and experiments were exemplarily carried out with Multilam contact elements. Conductors and contact element consisted of silver-plated copper.
The analytical voltage-temperature relation was used to calculate the steady-state performance; calculations were verified with a temperature-rise test. The temperature difference from contact element to conductors is very small (≤ 3 K) for standard applications like switchgear. Thus, it is sufficient to use the conductor temperature as a criterion for the design of the continuous ampacity of high-power contact systems. At short-time load, a fast spatially inhomogeneous temperature rise was numerically calculated. Conductor and contact element continuously heat up; due to the smaller current carrying cross section, median final temperature rise in the contact element is one order of magnitude larger than in the conductors. Because of their negligible thermal capacity, contacts perform 100 Hz temperature cycles at 50 Hz AC load; the maximum contact temperatures may be significantly higher than the median temperature of the contact elements.
In the long-term test, after 16 000 h operating time at 180 °C and regular plugging operations, contact elements maintained enough joint force to meet the requirements of a new contact system. At 105 °C however, a thermally instable grease led to electrical failure of part of the connectors. |
author2 |
Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik |
author_facet |
Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik Gatzsche, Michael |
author |
Gatzsche, Michael |
author_sort |
Gatzsche, Michael |
title |
Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente |
title_short |
Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente |
title_full |
Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente |
title_fullStr |
Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente |
title_full_unstemmed |
Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente |
title_sort |
elektrisch‐thermisches betriebs‐ und langzeitverhalten hochstromtragfähiger kontaktelemente |
publisher |
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
publishDate |
2017 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215450 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215450 http://www.qucosa.de/fileadmin/data/qucosa/documents/21545/Dissertation_Gatzsche_2016.pdf |
work_keys_str_mv |
AT gatzschemichael elektrischthermischesbetriebsundlangzeitverhaltenhochstromtragfahigerkontaktelemente |
_version_ |
1718407447889051648 |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-14-qucosa-2154502017-01-13T03:31:39Z Elektrisch‐thermisches Betriebs‐ und Langzeitverhalten hochstromtragfähiger Kontaktelemente Gatzsche, Michael Hochstromtechnik Steckverbindung Kontakt thermische Dimensionierung Kurzschluss Spannungs-Temperatur-Beziehung Langzeitverhalten Relaxation Schmierfett high-power engineering plug-in connection contact thermal design short-circuit voltage-temperature relation long-term performance relaxation grease ddc:621.3 rvk:ZN 4460 rvk:ZN 8110 In Geräten und Anlagen des Stromnetzes werden Steckverbinder mit hoher Stromtragfähigkeit eingesetzt, wenn bewegliche Teile kontaktiert werden oder Betriebsmittel mit geringem Aufwand montier- und demontierbar sein müssen. Die elektrische Verbindung der Leiter wird dabei oft mit federnden Kontaktelementen realisiert. Die Kontaktelemente müssen als Teil der Strombahn während der Lebensdauer des Geräts den Betriebsstrom im Kiloampere-Bereich und im Fehlerfall bis zu einige Sekunden lang den eine Größenordnung höheren Kurzschlussstrom tragen. In der vorliegenden Arbeit wurden Rechenmodelle für die innere Erwärmung von Hochstrom-Kontaktsystemen im stationären Dauerbetrieb und im transienten Kurzschlussfall entwickelt. Das elektrische und mechanische Langzeitverhalten im Temperaturbereich (105…180) °C wurde experimentell mit stromdurchflossenen, fettgeschmierten Modellsteckverbindern, die regelmäßig getrennt und neu gesteckt wurden, untersucht. Modellerstellung, Rechnungen und Versuche wurden beispielhaft mit Kontaktelementen vom Typ Multilam durchgeführt. Kontaktelemente und Leiter bestanden aus versilbertem Kupfer. Für das stationäre Betriebsverhalten wurden die mit der analytischen Spannungs-Temperatur-Beziehung nach Kohlrausch berechneten Ergebnisse mit einem Erwärmungsversuch verifiziert. Die Temperaturdifferenz zwischen Kontaktelement und Leiter ist bei Standardanwendungen, wie in Schaltanlagen, mit ≤ 3 K sehr klein. Deshalb ist die Leitertemperatur als Zielgröße beim Dimensionieren der Dauerstrombelastbarkeit ausreichend. Bei Kurzschlussstrombelastung wurde im Kontaktsystem eine schnelle, räumlich unterschiedlich ausgeprägte Erwärmung numerisch berechnet. Leiter und Kontaktelement erwärmen sich kontinuierlich, wobei die mittlere Endübertemperatur im Kontaktelement aufgrund des kleineren stromtragenden Querschnitts eine Größenordnung höher ist. Die Kontakte führen bei 50 Hz-Wechselstrom aufgrund ihrer vernachlässigbaren Wärmekapazität 100 Hz-Temperaturzyklen aus. Dabei können die Maximaltemperaturen noch deutlich größer als die mittlere Temperatur der Kontaktelemente sein. Im Langzeitversuch waren nach 16 000 h Betriebszeit bei 180 °C und regelmäßigen simulierten Steckvorgängen die Verbindungskräfte noch genügend groß, um die elektrischen Anforderungen eines neuen Kontaktsystems zu erfüllen. Allerdings führte bei einer Betriebstemperatur von 105 °C ein thermisch instabiles Schmierfett zum vorzeitigen elektrischen Ausfall eines Teils der Steckverbinder. Switchgear and devices for the power grid use high-power connectors if moving parts have to be contacted or equipment shall be easily mountable and dismountable. The electrical connection of the conductors is often realized by spring-loaded contact elements. As part of the main circuit, contact elements must carry the full operating current in the kiloampere-range for the entire service life of the device. In case of a fault, the short-circuit current, which is one order of magnitude larger, has to be carried for up to several seconds. In this thesis, calculation models for the inner temperature rise of high-power contact systems in steady-state continuous operation, as well as for the transient short-circuit load case were developed. Electrical and mechanical long-term performance in the temperature range from 105 to 180 °C was experimentally investigated with current carrying, grease-lubricated model connectors which were regularly unplugged and replugged. Modelling, calculations and experiments were exemplarily carried out with Multilam contact elements. Conductors and contact element consisted of silver-plated copper. The analytical voltage-temperature relation was used to calculate the steady-state performance; calculations were verified with a temperature-rise test. The temperature difference from contact element to conductors is very small (≤ 3 K) for standard applications like switchgear. Thus, it is sufficient to use the conductor temperature as a criterion for the design of the continuous ampacity of high-power contact systems. At short-time load, a fast spatially inhomogeneous temperature rise was numerically calculated. Conductor and contact element continuously heat up; due to the smaller current carrying cross section, median final temperature rise in the contact element is one order of magnitude larger than in the conductors. Because of their negligible thermal capacity, contacts perform 100 Hz temperature cycles at 50 Hz AC load; the maximum contact temperatures may be significantly higher than the median temperature of the contact elements. In the long-term test, after 16 000 h operating time at 180 °C and regular plugging operations, contact elements maintained enough joint force to meet the requirements of a new contact system. At 105 °C however, a thermally instable grease led to electrical failure of part of the connectors. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik Dr.-Ing. Nils Lücke Prof. Dr.-Ing. Steffen Großmann Prof. Dr.-Ing. Jian Song 2017-01-12 doc-type:doctoralThesis application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215450 urn:nbn:de:bsz:14-qucosa-215450 isbn:978-3-8440-4894-0 http://www.qucosa.de/fileadmin/data/qucosa/documents/21545/Dissertation_Gatzsche_2016.pdf deu |