Temporal Stability of GPS Transmitter Group Delay Variations

The code observable of global navigation satellite systems (GNSS) is influenced by group delay variations (GDV) of transmitter and receiver antennas. For the Global Positioning System (GPS), the variations can sum up to 1 m in the ionosphere-free linear combination and thus can significantly affect...

Full description

Bibliographic Details
Main Authors: Beer, Susanne, Wanninger, Lambert
Other Authors: Multidisciplinary Digital Publishing Institute (MDPI),
Format: Article
Language:English
Published: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2018
Subjects:
Online Access:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-236968
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-236968
http://www.qucosa.de/fileadmin/data/qucosa/documents/23696/sensors-18-01744.pdf
Description
Summary:The code observable of global navigation satellite systems (GNSS) is influenced by group delay variations (GDV) of transmitter and receiver antennas. For the Global Positioning System (GPS), the variations can sum up to 1 m in the ionosphere-free linear combination and thus can significantly affect precise code applications. The contribution of the GPS transmitters can amount to 0.8 m peak-to-peak over the entire nadir angle range. To verify the assumption of their time-invariance, we determined daily individual satellite GDV for GPS transmitter antennas over a period of more than two years. Dual-frequency observations of globally distributed reference stations and their multipath combination form the basis for our analysis. The resulting GPS GDV are stable on the level of a few centimeters for C1, P2, and for the ionosphere-free linear combination. Our study reveals that the inconsistencies of the GDV of space vehicle number (SVN) 55 with respect to earlier studies are not caused by temporal instabilities, but are rather related to receiver properties.