Description
Summary:Die vorliegende Arbeit beschäftigt sich in Experiment und Theorie mit Laser-Plasma beschleunigten Elektronen und optischen Undulatoren zur Erzeugung von brillianter Synchrotronstrahlung. Zum ersten Mal wird experimentell nachgewießen, dass laserbeschleunigte Elektronenpulse kürzer als 30 fs sind. Ferner werden solche Elektronenpulse erstmalig in einem Demonstrationsexperiment durch einen magnetischen Undulator als Synchrotronstrahlenquelle genutzt. Aufbauend auf diesen experimentellen Erkenntnissen, sowie umfangreichen numerischen Simulationen zur Thomsonstreuung, werden die theoretischen Grundlagen einer neuartigen Interaktionsgeometrie für Laser-Materie Wechselwirkungen entwickelt. Diese neue, in der Anwendbarkeit sehr allgemeine Methode basiert auf raum-zeitlicher Laserpulsformung durch nichtlineare Winkeldispersion wie diese durch VLS- (varied-line spacing) Gitter erzeugt werden kann und hat den Vorteil nicht durch die Fokussierbarkeit des Lasers (Rayleighlänge) begrenzt zu sein. Zusammen mit laserbeschleunigten Elektronen ermöglicht dieser traveling-wave Thomson scattering (TWTS) benannte Ansatz neuartige, nur auf optischer Technologie basierende Synchrotronstrahlenquellen mit Zentimeter bis Meter langen optische Undulatoren. Die hierbei mit existierenden Lasern erzielbaren Brillianzen übersteigen diese bestehender Thomsonquellen-Designs um 2-3 Größenordnungen. Die hier vorgestellten Ergebnisse weisen weit über die Grenzen der vorliegenden Arbeit hinaus. Die Möglichkeit Laser als Teilchenbeschleuniger und auch optischen Undulator zu verwenden führt zu bauartbedingt sehr kompakten und energieeffizienten Synchrotronstrahlungsquellen. Die hieraus resultierende monochromatische Strahlung hoher Brillianz in einem Wellenlängenbereich von extremen ultraviolett (EUV) zu harten Röntgenstrahlen ist für die Grundlagenforschung, medizinische Anwendungen, Material- und Lebenswissenschaften von fundamentaler Bedeutung und wird maßgeblich zu einer neuen Generation ultrakurzer Strahlungsquellen und freien Elektronenlasern (FELs) beitragen. === This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).