On the validity of the Einstein’s Relation and the Fick I Law on the nanoscale
The classical Einstein’s relation for the Brownian migration has a mesoscopic character and it deteriorates when e.g. diffusion in solids is considered in the nanoscale (i.e. if the diffusion distance is comparable with the atomic spacing). This behaviour is strongly related to the well-known diffus...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Universitätsbibliothek Leipzig
2016
|
Subjects: | |
Online Access: | http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-195752 http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-195752 http://www.qucosa.de/fileadmin/data/qucosa/documents/19575/diff_fund_2%282005%2943.pdf |
id |
ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-195752 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-DRESDEN-oai-qucosa.de-bsz-15-qucosa-1957522016-01-26T03:28:24Z On the validity of the Einstein’s Relation and the Fick I Law on the nanoscale Beke, Dezső L. Erdélyi, Zoltán Diffusion Transport diffusion transport ddc:530 The classical Einstein’s relation for the Brownian migration has a mesoscopic character and it deteriorates when e.g. diffusion in solids is considered in the nanoscale (i.e. if the diffusion distance is comparable with the atomic spacing). This behaviour is strongly related to the well-known diffusion paradox, predicting infinitely fast diffusion kinetics at short times (distances). Indeed, according to the Fick I law the gradient is infinite if there is a discontinuity in the density at the beginning (which is the case in typical interdiffusion measurements). In this paper these questions and a possible resolution of the above paradox will be discussed on the basis of results obtained in our Laboratory. Universitätsbibliothek Leipzig University of Debrecen, Department of Solid State Physics Universität Leipzig, Fakultät für Physik und Geowissenschaften 2016-01-25 doc-type:article application/pdf http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-195752 urn:nbn:de:bsz:15-qucosa-195752 issn:1862-4138 http://www.qucosa.de/fileadmin/data/qucosa/documents/19575/diff_fund_2%282005%2943.pdf Diffusion fundamentals 2 (2005) 43, S. 1-16 eng |
collection |
NDLTD |
language |
English |
format |
Article |
sources |
NDLTD |
topic |
Diffusion Transport diffusion transport ddc:530 |
spellingShingle |
Diffusion Transport diffusion transport ddc:530 Beke, Dezső L. Erdélyi, Zoltán On the validity of the Einstein’s Relation and the Fick I Law on the nanoscale |
description |
The classical Einstein’s relation for the Brownian migration has a mesoscopic character and it deteriorates when e.g. diffusion in
solids is considered in the nanoscale (i.e. if the diffusion distance is comparable with the atomic spacing). This behaviour is strongly
related to the well-known diffusion paradox, predicting infinitely fast diffusion kinetics at short times (distances). Indeed, according to the Fick I law the gradient is infinite if there is a discontinuity in the density at the beginning (which is the case in typical interdiffusion measurements). In this paper these questions and a possible resolution of the above paradox will be discussed on the basis of results obtained in our Laboratory. |
author2 |
University of Debrecen, Department of Solid State Physics |
author_facet |
University of Debrecen, Department of Solid State Physics Beke, Dezső L. Erdélyi, Zoltán |
author |
Beke, Dezső L. Erdélyi, Zoltán |
author_sort |
Beke, Dezső L. |
title |
On the validity of the Einstein’s Relation and the Fick I Law on the
nanoscale |
title_short |
On the validity of the Einstein’s Relation and the Fick I Law on the
nanoscale |
title_full |
On the validity of the Einstein’s Relation and the Fick I Law on the
nanoscale |
title_fullStr |
On the validity of the Einstein’s Relation and the Fick I Law on the
nanoscale |
title_full_unstemmed |
On the validity of the Einstein’s Relation and the Fick I Law on the
nanoscale |
title_sort |
on the validity of the einstein’s relation and the fick i law on the
nanoscale |
publisher |
Universitätsbibliothek Leipzig |
publishDate |
2016 |
url |
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-195752 http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-195752 http://www.qucosa.de/fileadmin/data/qucosa/documents/19575/diff_fund_2%282005%2943.pdf |
work_keys_str_mv |
AT bekedezsol onthevalidityoftheeinsteinsrelationandthefickilawonthenanoscale AT erdelyizoltan onthevalidityoftheeinsteinsrelationandthefickilawonthenanoscale |
_version_ |
1718161731318972416 |