Synthesis and Characterization of Imidazolo 3,1- Tetrakis (N-phenylacetamidato) Dirhodium (II) and a Crystallographic Study of a Copper and Two Molybdenum Model Cofactors

Imidazole was reacted with 3,1-tetrakis (N-phenlyacetamidato) dirhodium (II) to explore the chemistry of asymmetric dirhodium catalysts. The imidazolo 3,1-tetrakis (Nphenlyacetamidato) dirhodium (II) complex was synthesized and then characterized by Nuclear Magnetic Resonance and Ultraviolet-Visible...

Full description

Bibliographic Details
Main Author: Thompson, Gabriel I.G.
Format: Others
Language:English
Published: Digital Commons @ East Tennessee State University 2016
Subjects:
Online Access:https://dc.etsu.edu/etd/3107
https://dc.etsu.edu/cgi/viewcontent.cgi?article=4527&context=etd
Description
Summary:Imidazole was reacted with 3,1-tetrakis (N-phenlyacetamidato) dirhodium (II) to explore the chemistry of asymmetric dirhodium catalysts. The imidazolo 3,1-tetrakis (Nphenlyacetamidato) dirhodium (II) complex was synthesized and then characterized by Nuclear Magnetic Resonance and Ultraviolet-Visible spectroscopies as well as by single crystal X-ray Diffraction. Additionally, one copper and two molybdenum model cofactors were characterized by XRD to better understand their structure/function relationships. NMR results gave evidence of the formation of the 3,1-imidazole complex, and UV-Vis indicated that even in large excess imidazole was coordinated only to one axial site. The structure of the 3,1-imidazole complex was confirmed by XRD with the following refinement indicators: R1: 3.97%, wR2: 9.27%, GooF: 1.036. Model cofactors were also characterized by XRD and resulted in the following refinement indicators for Mo-1: R1: 4.27%, wR2: 9.15%, GooF: 1.074; for Cu-1: R1: 10.10%, wR2: 22.60%, GooF: 0.991, and for Mo-2: R1: 17.75%, wR2: 46.08%, GooF: 0.954.