A multi-resolution discontinuous galerkin method for unsteady compressible flows

The issue of local scale and smoothness presents a crucial and daunting challenge for numerical simulation methods in fluid dynamics. Yet in the interests of both accuracy and economy, how can one devise a general technique that efficiently resolves flow features of consequence and discriminates ag...

Full description

Bibliographic Details
Main Author: Shelton, Andrew Brian
Published: Georgia Institute of Technology 2008
Subjects:
Online Access:http://hdl.handle.net/1853/24715
id ndltd-GATECH-oai-smartech.gatech.edu-1853-24715
record_format oai_dc
spelling ndltd-GATECH-oai-smartech.gatech.edu-1853-247152013-01-07T20:27:48ZA multi-resolution discontinuous galerkin method for unsteady compressible flowsShelton, Andrew BrianHigh orderShockWaveletAdaptationVortexUnsteady flow (Aerodynamics)Galerkin methodsFluid dynamicsThe issue of local scale and smoothness presents a crucial and daunting challenge for numerical simulation methods in fluid dynamics. Yet in the interests of both accuracy and economy, how can one devise a general technique that efficiently resolves flow features of consequence and discriminates against others which are either ``negligible' or amenable to ``universal' modeling? This is particularly difficult because geometries of engineering interest are complex and multi-dimensional, precluding a priori knowledge of the flowfield. To address this challenge, the current work employs wavelet theory for the local scale decomposition of functions, which provides a natural mechanism for the adaptive compression of data. The resulting technique is known as the Multi-Resolution Discontinuous Galerkin (MRDG) method. This research successfully demonstrates that the multi-resolution framework and the discontinuous Galerkin method are well-suited for a new approach to accuracy and cost as demonstrated by the relative ease of their integration in spatial dimension greater than one. Some specific steps achieved include the implementation of suitable data encoding and compression algorithms, construction of multi-wavelet expansion bases in one and two dimensions, and derivation of the multi-resolution derivative operator that includes an upwind-type correction to the central scheme. Solutions with the MRDG method are observed to adapt to and track both smooth and discontinuous flow features in an entirely solution-driven manner without the need for a priori user knowledge of those flow features. Run-time efficiency and local adaptation characteristics are explored via a series of classic test problems.Georgia Institute of Technology2008-09-17T19:31:43Z2008-09-17T19:31:43Z2008-07-09Dissertationhttp://hdl.handle.net/1853/24715
collection NDLTD
sources NDLTD
topic High order
Shock
Wavelet
Adaptation
Vortex
Unsteady flow (Aerodynamics)
Galerkin methods
Fluid dynamics
spellingShingle High order
Shock
Wavelet
Adaptation
Vortex
Unsteady flow (Aerodynamics)
Galerkin methods
Fluid dynamics
Shelton, Andrew Brian
A multi-resolution discontinuous galerkin method for unsteady compressible flows
description The issue of local scale and smoothness presents a crucial and daunting challenge for numerical simulation methods in fluid dynamics. Yet in the interests of both accuracy and economy, how can one devise a general technique that efficiently resolves flow features of consequence and discriminates against others which are either ``negligible' or amenable to ``universal' modeling? This is particularly difficult because geometries of engineering interest are complex and multi-dimensional, precluding a priori knowledge of the flowfield. To address this challenge, the current work employs wavelet theory for the local scale decomposition of functions, which provides a natural mechanism for the adaptive compression of data. The resulting technique is known as the Multi-Resolution Discontinuous Galerkin (MRDG) method. This research successfully demonstrates that the multi-resolution framework and the discontinuous Galerkin method are well-suited for a new approach to accuracy and cost as demonstrated by the relative ease of their integration in spatial dimension greater than one. Some specific steps achieved include the implementation of suitable data encoding and compression algorithms, construction of multi-wavelet expansion bases in one and two dimensions, and derivation of the multi-resolution derivative operator that includes an upwind-type correction to the central scheme. Solutions with the MRDG method are observed to adapt to and track both smooth and discontinuous flow features in an entirely solution-driven manner without the need for a priori user knowledge of those flow features. Run-time efficiency and local adaptation characteristics are explored via a series of classic test problems.
author Shelton, Andrew Brian
author_facet Shelton, Andrew Brian
author_sort Shelton, Andrew Brian
title A multi-resolution discontinuous galerkin method for unsteady compressible flows
title_short A multi-resolution discontinuous galerkin method for unsteady compressible flows
title_full A multi-resolution discontinuous galerkin method for unsteady compressible flows
title_fullStr A multi-resolution discontinuous galerkin method for unsteady compressible flows
title_full_unstemmed A multi-resolution discontinuous galerkin method for unsteady compressible flows
title_sort multi-resolution discontinuous galerkin method for unsteady compressible flows
publisher Georgia Institute of Technology
publishDate 2008
url http://hdl.handle.net/1853/24715
work_keys_str_mv AT sheltonandrewbrian amultiresolutiondiscontinuousgalerkinmethodforunsteadycompressibleflows
AT sheltonandrewbrian multiresolutiondiscontinuousgalerkinmethodforunsteadycompressibleflows
_version_ 1716474923545788416