Summary: | Transient emission of a particle in inductively coupled plasma-atomic emission spectrometry (ICP-AES) depends on the fundamental processes of aerosol desolvation, particle vaporization and atomization, ionization, excitation and diffusion of the analyte. Ideally, the rate of the above processes can be determined from the evolution of the transient emission as the ion plume moves along the central channel of the ICP. However, the dimension of the ion plume is significantly smaller than the central channel. The signal-to-background and signal-to-noise ratios suffer when the entire channel is imaged. Deconvolution of the temporal profile is required to determine the emission intensity of the ion plume versus observation height. Small aperture can be used to locate the vertical emission position accurately, but the evolution of the plume emission is lost.
In this study, a double-slit method has been developed to pin-point two vertical positions of an ion plume. An ion plume travelling along the ICP central channel produces two peaks in the temporal emission profile. The temporal evolution of emission intensity can be correlated to delineate the degree of particle vaporization at the two positions. The relative widths and separation of the two peaks in a double-peak can be used to determine the analyte diffusion rate and particle velocity in the ICP, respectively.
An unicellular green algae, chlorella vulgaris, was used as the test particles. The average Mg content of the algae is equivalent to MgO particles of diameter of 265nm. The strong ionic emission at wavelength of 279.55nm was monitored using a ¼ -m monochromator equipped with a PMT detector. Method of curve fitting was used to filter out the noise with minimum distortion of the peak shape for accurate determination of peak height and peak width. The merits of curve fitting versus methods of smoothing such as moving average and Savitzky-Golay filtering will be discussed.
All transient emissions from the algal cells were detected with sufficient signal-to-noise ratio using a single-slit setup with slit height of 1mm at observation height of 18 mm above the load coil and ICP forward power of 1400 W. However, using the double-slit setup, less than half of the expected double-peaks were observed. One of the peaks in the double-peak can be below the detection limit and the double-peak is lost.
An innovative development of this study is that the relative sensitivity corresponding to the 2 slits can be varied to enhance the intensity of the weaker emission peak. The peak with insufficient signal-to-noise ratio for detection can be enhanced to a level above the limit of detection. The number of observed double-peaks in increased and the observed particles are more representative of the population.
Two types of double-peaks are categorized according to the relative intensity of the first peak to the second peak. A computer model was used to estimate the intensity ratio of the two emission peaks at different observation position of the ICP. The experimental and theoretical ratios agree generally. The theoretical ratio also shows the bias in the population sampled by the double-slit setup. === published_or_final_version === Chemistry === Master === Master of Philosophy
|