Aritmética e aplicações
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-02-01T13:56:22Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Jair da Silva Matos.pdf: 1568748 bytes, checksum: 76f30064025c3a9b95d0772e35a1ed6f (MD5) ==...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal do Amazonas
2018
|
Subjects: | |
Online Access: | http://tede.ufam.edu.br/handle/tede/6123 |
id |
ndltd-IBICT-oai-http---localhost-tede-6123 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Aritmética Exame de Qualificação História da Aritmética CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA |
spellingShingle |
Aritmética Exame de Qualificação História da Aritmética CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA Matos, Jair da Silva 92-98116-8891 Aritmética e aplicações |
description |
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-02-01T13:56:22Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Jair da Silva Matos.pdf: 1568748 bytes, checksum: 76f30064025c3a9b95d0772e35a1ed6f (MD5) === Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-02-01T13:56:48Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Jair da Silva Matos.pdf: 1568748 bytes, checksum: 76f30064025c3a9b95d0772e35a1ed6f (MD5) === Made available in DSpace on 2018-02-01T13:56:48Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Jair da Silva Matos.pdf: 1568748 bytes, checksum: 76f30064025c3a9b95d0772e35a1ed6f (MD5)
Previous issue date: 2017-11-29 === CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === This dissertation aims to present succinctly some immediate, thout not trivial, Number Theory-
Arithmetic applications, among which we can highlight the Euclidean Algorithm, Modular
Congruences and the Chinese Remainder Theorem. In addition to these topics, we give special
attention at the great mathematicians who contributed to the arithmetic among them, Diophantus
od Alexandria, Pierre de Fermat, Euclides of Alexandria among others. The structure of the
dissertation is as follows: in chapter 2 we deal with the theoretical revision of integers and their
properties. We emphasize the Well Ordering Principle, wich characterizes whole number, we
deal with some important propositions, common maximum divisor and it´s properties, prime
numbers, the Fundamental Theorem of Arithmetic, Fermat´s Little Theorem, Fermat numbers,
Mersenne´s Numbers, Numbers Perfect, and we end with the study of Congruences and the
Arithmetic of the Remains. In chapter 3 we present some applications that we started with the
Linear Diophantine Equations, Linear Congruences and Their resolutions, the Chinese Residue
Theorem, Residual Classes, and finaly we solve problems that were part of the PROFMAT National
Qualification Exams from 2012 to 2017. Such proplems are solved with the tools proposed
in the text, lemmas, theorems, propositions and properties that facilitate resolution. We believe
that these contents serve to contribute to the formation of the future teacher of Basic Education,
as well as to deepen the knowledge of those who already work in the area of Mathematics
Teaching. === Essa dissertação de conclusão de curso tem por objetivo apresentar sucintamente algumas aplicações
imediatas, embora não-triviais de Teoria dos Números-Aritmética, dentre as quais podemos
destacar o Algoritmo de Euclides, congruências modulares e o Teorema Chinês dos
Restos. Além destes tópicos abordados, damos uma atenção especial no início deste trabalho
de conclusão de curso a alguns dos grandes matemáticos que contribuíram à aritmética entre
eles, Diofante de Alexandria, Pierre de Fermat, Euclides de Alexandria entre outros. A estrutura
da dissertação é a seguinte: No capítulo 2 tratamos da revisão teórica sobre os números
inteiros e suas propriedades. Destacamos o Princípio da Boa Ordenação, que caracteriza os
números inteiros, tratamos de algumas proposições importantes, máximo divisor comum e suas
propriedades, números primos, o Teorema Fundamental da Aritmética, o Pequeno Teorema de
Fermat, números de Fermat, números de Mersenne, números Perfeitos e finalizamos o capítulo
2 com o estudo das congruências e a aritmética dos restos. No capítulo 3 apresentamos algumas
aplicações e iniciamos com as Equações Diofantinas Lineares, Congruências Lineares e suas
resoluções, o Teorema Chinês dos Restos, Classes Residuais e, finalmente, resolvemos problemas
que fizeram parte dos Exames Nacionais de Qualificação do PROFMAT desde 2012 até
2017. Tais problemas são resolvidos com as ferramentas propostas no texto, lemas, teoremas,
proposições e propriedades, que facilitam a resolução. Acreditamos que tais conteúdos servem
para contribuir na formação do futuro professor do Ensino Básico, assim como aprofundar os
conhecimentos daqueles que já labutam na área do Ensino de Matemática. |
author2 |
ppgmufam@gmail.com |
author_facet |
ppgmufam@gmail.com Matos, Jair da Silva 92-98116-8891 |
author |
Matos, Jair da Silva 92-98116-8891 |
author_sort |
Matos, Jair da Silva |
title |
Aritmética e aplicações |
title_short |
Aritmética e aplicações |
title_full |
Aritmética e aplicações |
title_fullStr |
Aritmética e aplicações |
title_full_unstemmed |
Aritmética e aplicações |
title_sort |
aritmética e aplicações |
publisher |
Universidade Federal do Amazonas |
publishDate |
2018 |
url |
http://tede.ufam.edu.br/handle/tede/6123 |
work_keys_str_mv |
AT matosjairdasilva aritmeticaeaplicacoes AT 92981168891 aritmeticaeaplicacoes |
_version_ |
1718896302856601600 |
spelling |
ndltd-IBICT-oai-http---localhost-tede-61232019-01-21T22:37:20Z Aritmética e aplicações Matos, Jair da Silva 92-98116-8891 ppgmufam@gmail.com Oliveira, Nilomar Vieira Prata, Roberto Antonio Cordeiro Amorim Neto, Alcides de Castro Aritmética Exame de Qualificação História da Aritmética CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-02-01T13:56:22Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Jair da Silva Matos.pdf: 1568748 bytes, checksum: 76f30064025c3a9b95d0772e35a1ed6f (MD5) Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-02-01T13:56:48Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Jair da Silva Matos.pdf: 1568748 bytes, checksum: 76f30064025c3a9b95d0772e35a1ed6f (MD5) Made available in DSpace on 2018-02-01T13:56:48Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Jair da Silva Matos.pdf: 1568748 bytes, checksum: 76f30064025c3a9b95d0772e35a1ed6f (MD5) Previous issue date: 2017-11-29 CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior This dissertation aims to present succinctly some immediate, thout not trivial, Number Theory- Arithmetic applications, among which we can highlight the Euclidean Algorithm, Modular Congruences and the Chinese Remainder Theorem. In addition to these topics, we give special attention at the great mathematicians who contributed to the arithmetic among them, Diophantus od Alexandria, Pierre de Fermat, Euclides of Alexandria among others. The structure of the dissertation is as follows: in chapter 2 we deal with the theoretical revision of integers and their properties. We emphasize the Well Ordering Principle, wich characterizes whole number, we deal with some important propositions, common maximum divisor and it´s properties, prime numbers, the Fundamental Theorem of Arithmetic, Fermat´s Little Theorem, Fermat numbers, Mersenne´s Numbers, Numbers Perfect, and we end with the study of Congruences and the Arithmetic of the Remains. In chapter 3 we present some applications that we started with the Linear Diophantine Equations, Linear Congruences and Their resolutions, the Chinese Residue Theorem, Residual Classes, and finaly we solve problems that were part of the PROFMAT National Qualification Exams from 2012 to 2017. Such proplems are solved with the tools proposed in the text, lemmas, theorems, propositions and properties that facilitate resolution. We believe that these contents serve to contribute to the formation of the future teacher of Basic Education, as well as to deepen the knowledge of those who already work in the area of Mathematics Teaching. Essa dissertação de conclusão de curso tem por objetivo apresentar sucintamente algumas aplicações imediatas, embora não-triviais de Teoria dos Números-Aritmética, dentre as quais podemos destacar o Algoritmo de Euclides, congruências modulares e o Teorema Chinês dos Restos. Além destes tópicos abordados, damos uma atenção especial no início deste trabalho de conclusão de curso a alguns dos grandes matemáticos que contribuíram à aritmética entre eles, Diofante de Alexandria, Pierre de Fermat, Euclides de Alexandria entre outros. A estrutura da dissertação é a seguinte: No capítulo 2 tratamos da revisão teórica sobre os números inteiros e suas propriedades. Destacamos o Princípio da Boa Ordenação, que caracteriza os números inteiros, tratamos de algumas proposições importantes, máximo divisor comum e suas propriedades, números primos, o Teorema Fundamental da Aritmética, o Pequeno Teorema de Fermat, números de Fermat, números de Mersenne, números Perfeitos e finalizamos o capítulo 2 com o estudo das congruências e a aritmética dos restos. No capítulo 3 apresentamos algumas aplicações e iniciamos com as Equações Diofantinas Lineares, Congruências Lineares e suas resoluções, o Teorema Chinês dos Restos, Classes Residuais e, finalmente, resolvemos problemas que fizeram parte dos Exames Nacionais de Qualificação do PROFMAT desde 2012 até 2017. Tais problemas são resolvidos com as ferramentas propostas no texto, lemas, teoremas, proposições e propriedades, que facilitam a resolução. Acreditamos que tais conteúdos servem para contribuir na formação do futuro professor do Ensino Básico, assim como aprofundar os conhecimentos daqueles que já labutam na área do Ensino de Matemática. 2018-02-01T13:56:48Z 2017-11-29 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis MATOS, Jair da Silva. Aritmética e aplicações. 2017. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal do Amazonas, Manaus, 2017. http://tede.ufam.edu.br/handle/tede/6123 por 3062048892926319528 500 http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess application/pdf Universidade Federal do Amazonas Programa de Pós-graduação em Matemática UFAM Brasil Instituto de Ciências Exatas reponame:Biblioteca Digital de Teses e Dissertações da UFAM instname:Universidade Federal do Amazonas instacron:UFAM |