Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE).

Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-06-05T14:54:01Z No. of bitstreams: 1 2010 - Samuel_Ribeiro_Passos.pdf: 16768295 bytes, checksum: 38c2614ad26085e9a101652551af84b5 (MD5) === Made available in DSpace on 2017-06-05T14:54:01Z (GMT). No. of bitstreams: 1 2010 - Samuel_Ribeiro_Pas...

Full description

Bibliographic Details
Main Author: Passos, Samuel Ribeiro
Other Authors: Xavier, Gustavo Ribeiro
Format: Others
Language:Portuguese
Published: Universidade Federal Rural do Rio de Janeiro 2017
Subjects:
Online Access:https://tede.ufrrj.br/jspui/handle/jspui/1735
id ndltd-IBICT-oai-localhost-jspui-1735
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Gut microbiolog
BNF in the gut
Cellulolytic enzymes
Microbiota associada ao trato intestinal
FBN no trato intestinal
Enzimas celulol?ticas
Ci?ncias Agr?rias
spellingShingle Gut microbiolog
BNF in the gut
Cellulolytic enzymes
Microbiota associada ao trato intestinal
FBN no trato intestinal
Enzimas celulol?ticas
Ci?ncias Agr?rias
Passos, Samuel Ribeiro
Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE).
description Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-06-05T14:54:01Z No. of bitstreams: 1 2010 - Samuel_Ribeiro_Passos.pdf: 16768295 bytes, checksum: 38c2614ad26085e9a101652551af84b5 (MD5) === Made available in DSpace on 2017-06-05T14:54:01Z (GMT). No. of bitstreams: 1 2010 - Samuel_Ribeiro_Passos.pdf: 16768295 bytes, checksum: 38c2614ad26085e9a101652551af84b5 (MD5) Previous issue date: 2010-02-23 === Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior, CAPES, Brasil. === The increasing demand for biological processes alternative, environmentally friendly and efficient in converting lignocellulosic material, expanding their application potential for agribusiness, motivates researches worldwide. Thus, organisms isolated in nature, in specific ecosystems, become increasingly important because of their physiological and metabolic diversity, which gives them a great potential in the development of biotechnological processes of interest to society. The aim of this study was to assess the microbial community associated with the intestinal tract of millipede Trigoniulus corallinus and bioprospecting for microorganisms with cellulolytic capacity. The millipedes were collected and incubated with litter in diets of grass (Paspalum notatum) and ?sabia? (Mimosa caesalpinifolia). Sampling occurred at 15, 30, 45, and 75 days of incubation. The intestinal tract of five individuals was removed, sectioned the posterior third, processed and stored in ultrasound. DNA from microbes associated with the intestinal tract, litter and coprolite was extracted, and DGGE analysis using 16S rDNA, DGGE group actinomycetes, and it was evaluated the presence of nifH genes. The 16s gene analysis by DGGE revealed a microbial diversity conditioned by the diet offered to 45 days. After this period, this effect was no longer visible. The community associated with coprolites and the type of litter was distributed in separate clusters of samples from the intestinal tract. This effect was not observed in the community assessment of actinomycetes, where the big difference for division of groups was the diet. The animals fed on grass litter showed a diverse community, and they were not influenced by time or compartmentalization. The samples associated with litter and coprolites were 80% similar to samples from the intestinal tract. In millipedes fed with material form Mimosa caesalpinifolia, the result was different, the samples of litter and coprolites where 50% similar to the intestinal tract. All samples had nifH genes detected by polymerase chain reaction. Samples collected at 45 days were also inoculated in mineral minimum medium of Busnell-Hass added carboxymethyl-cellulose (CMC) as sole carbon source. Colonies were evaluated for their ability to breakdown cellulose enzyme and 15 had an index greater than 1. The isolate that showed the highest rate (3.65) was subjected to further analysis. The microscope observation suggested that this was not an isolated but a complex of microorganisms acting on the degradation of cellulose. There is evidence of BNF in the intestinal tract of the millipede and microorganisms proliferated in CMC through the proper amplification of nifH genes and proliferation in medium within nitrogen. The community of prokaryotes was influenced by the diet offered to the community up to 45 days, and the actinomycetes community was conditioned by the diet. It was possible to isolate microorganisms and complexes of microorganisms with cellulolytic capacity, with great potential in the search for environmentally friendly technologies in generating agrobioenergy. === A crescente demanda por processos biol?gicos alternativos, ambientalmente favor?veis e eficientes na transforma??o de material ligninocelul?sico, ampliando seu potencial de aplica??o agroindustrial, estimula pesquisas em todo o mundo. Assim, microrganismos isolados na natureza, em ecossistemas espec?ficos, tornam-se cada vez mais importantes pela sua diversidade metab?lica e fisiol?gica, que lhes confere grande potencialidade no desenvolvimento de processos biotecnol?gicos de interesse ? sociedade. O objetivo deste trabalho foi avaliar a comunidade microbiana associada ao trato intestinal do dipl?pode Trigoniulus corallinus e a bioprospec??o de microrganismos com capacidade celulol?tica. Os dipl?podes foram coletados e incubados em dietas com serrapilheira de grama batatais (Paspalum notatum) e sabi? (Mimosa caesalpinifolia). As amostragens aconteceram aos 15, 30, 45 e 75 dias de incuba??o. O trato intestinal de cinco indiv?duos foi removido e seccionado o ter?o posterior tratado em ultrasom e estocado. Procedeu-se a extra??o de DNA da microbiota associada ao trato intestinal, serrapilheira e copr?lito, com an?lise por DGGE utilizando o gene 16S rDNA, DGGE para grupo actinomicetos e avalia??o da presen?a de genes nifH. A an?lise do gene 16s por DGGE revelou diversidade microbiana condicionada pela dieta oferecida at? os 45 dias. Ap?s este per?odo o efeito n?o foi mais vis?vel. A comunidade associada aos copr?litos e ao tipo de serrapilheira distribui-se em grupamentos separados das amostras oriundas do trato intestinal. O mesmo n?o foi observado na avalia??o da comunidade de actinomicetos, onde o grande diferencial para divis?o de grupos foi a dieta. Os animais alimentados com serrapilheira de grama mostraram uma comunidade diversa e n?o influenciada pelo tempo ou compartimentaliza??o. As amostras associadas ? serrapilheira e aos copr?litos foram 80% similares ?s do trato intestinal. Nos dipl?podes alimentados com sabi?, o resultado foi diferente, sendo as amostras de serrapilheira e copr?litos 50% similares ?s do trato intestinal. Todas as amostragens tiveram genes nifH detectados via PCR. Amostras coletadas aos 45 dias foram tamb?m inoculadas em meio mineral m?nimo de Busnell-Hass adicionado de carboxi-metil-celulose (CMC) como ?nica fonte de carbono. Os microrganismos isolados foram avaliados quanto ? capacidade de degrada??o de celulose e 15 apresentaram ?ndice enzim?tico maior que 1. O isolado com o maior ?ndice (3,65) foi alvo de outras an?lises. A visualiza??o em microsc?pio sugeriu que n?o se tratava de um isolado e sim de um complexo de microrganismos atuando na degrada??o da celulose. H? evidencias de FBN no trato intestinal do dipl?pode e microrganismos proliferados em meio CMC pela boa amplifica??o de genes nifH e prolifera??o em meio com aus?ncia de nitrog?nio. A comunidade de procariotos foi influenciada pela dieta oferecida at? os 45 dias e a comunidade de actinomicetos foi condicionada em fun??o da dieta. Foram isolados microrganismos e complexos de microrganismos com capacidade celulol?tica, com grande potencial para a busca de tecnologias ambientalmente sustent?veis na gera??o de agrobioenergia.
author2 Xavier, Gustavo Ribeiro
author_facet Xavier, Gustavo Ribeiro
Passos, Samuel Ribeiro
author Passos, Samuel Ribeiro
author_sort Passos, Samuel Ribeiro
title Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE).
title_short Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE).
title_full Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE).
title_fullStr Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE).
title_full_unstemmed Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE).
title_sort diversidade de microrganismos no trato intestinal e res?duos digestivos de trigoniulus corallinus (gervais) (diplopoda, spirobolida, pachybolidae).
publisher Universidade Federal Rural do Rio de Janeiro
publishDate 2017
url https://tede.ufrrj.br/jspui/handle/jspui/1735
work_keys_str_mv AT passossamuelribeiro diversidadedemicrorganismosnotratointestinaleresduosdigestivosdetrigoniuluscorallinusgervaisdiplopodaspirobolidapachybolidae
AT passossamuelribeiro diversityofmicroorganismsinthegutandfoodwasteoftrigoniuluscorallinusgervaisdiplopodaspirobolidapachybolidae
_version_ 1718926857201516544
spelling ndltd-IBICT-oai-localhost-jspui-17352019-01-22T00:49:33Z Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE). Diversity of microorganisms in the gut and food waste of Trigoniulus corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE). Passos, Samuel Ribeiro Xavier, Gustavo Ribeiro Correia, Maria Elizabeth Fernandes Anjos, Lucia Helena Cunha dos Soares, Lu?s Henrique de Barros Gut microbiolog BNF in the gut Cellulolytic enzymes Microbiota associada ao trato intestinal FBN no trato intestinal Enzimas celulol?ticas Ci?ncias Agr?rias Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-06-05T14:54:01Z No. of bitstreams: 1 2010 - Samuel_Ribeiro_Passos.pdf: 16768295 bytes, checksum: 38c2614ad26085e9a101652551af84b5 (MD5) Made available in DSpace on 2017-06-05T14:54:01Z (GMT). No. of bitstreams: 1 2010 - Samuel_Ribeiro_Passos.pdf: 16768295 bytes, checksum: 38c2614ad26085e9a101652551af84b5 (MD5) Previous issue date: 2010-02-23 Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior, CAPES, Brasil. The increasing demand for biological processes alternative, environmentally friendly and efficient in converting lignocellulosic material, expanding their application potential for agribusiness, motivates researches worldwide. Thus, organisms isolated in nature, in specific ecosystems, become increasingly important because of their physiological and metabolic diversity, which gives them a great potential in the development of biotechnological processes of interest to society. The aim of this study was to assess the microbial community associated with the intestinal tract of millipede Trigoniulus corallinus and bioprospecting for microorganisms with cellulolytic capacity. The millipedes were collected and incubated with litter in diets of grass (Paspalum notatum) and ?sabia? (Mimosa caesalpinifolia). Sampling occurred at 15, 30, 45, and 75 days of incubation. The intestinal tract of five individuals was removed, sectioned the posterior third, processed and stored in ultrasound. DNA from microbes associated with the intestinal tract, litter and coprolite was extracted, and DGGE analysis using 16S rDNA, DGGE group actinomycetes, and it was evaluated the presence of nifH genes. The 16s gene analysis by DGGE revealed a microbial diversity conditioned by the diet offered to 45 days. After this period, this effect was no longer visible. The community associated with coprolites and the type of litter was distributed in separate clusters of samples from the intestinal tract. This effect was not observed in the community assessment of actinomycetes, where the big difference for division of groups was the diet. The animals fed on grass litter showed a diverse community, and they were not influenced by time or compartmentalization. The samples associated with litter and coprolites were 80% similar to samples from the intestinal tract. In millipedes fed with material form Mimosa caesalpinifolia, the result was different, the samples of litter and coprolites where 50% similar to the intestinal tract. All samples had nifH genes detected by polymerase chain reaction. Samples collected at 45 days were also inoculated in mineral minimum medium of Busnell-Hass added carboxymethyl-cellulose (CMC) as sole carbon source. Colonies were evaluated for their ability to breakdown cellulose enzyme and 15 had an index greater than 1. The isolate that showed the highest rate (3.65) was subjected to further analysis. The microscope observation suggested that this was not an isolated but a complex of microorganisms acting on the degradation of cellulose. There is evidence of BNF in the intestinal tract of the millipede and microorganisms proliferated in CMC through the proper amplification of nifH genes and proliferation in medium within nitrogen. The community of prokaryotes was influenced by the diet offered to the community up to 45 days, and the actinomycetes community was conditioned by the diet. It was possible to isolate microorganisms and complexes of microorganisms with cellulolytic capacity, with great potential in the search for environmentally friendly technologies in generating agrobioenergy. A crescente demanda por processos biol?gicos alternativos, ambientalmente favor?veis e eficientes na transforma??o de material ligninocelul?sico, ampliando seu potencial de aplica??o agroindustrial, estimula pesquisas em todo o mundo. Assim, microrganismos isolados na natureza, em ecossistemas espec?ficos, tornam-se cada vez mais importantes pela sua diversidade metab?lica e fisiol?gica, que lhes confere grande potencialidade no desenvolvimento de processos biotecnol?gicos de interesse ? sociedade. O objetivo deste trabalho foi avaliar a comunidade microbiana associada ao trato intestinal do dipl?pode Trigoniulus corallinus e a bioprospec??o de microrganismos com capacidade celulol?tica. Os dipl?podes foram coletados e incubados em dietas com serrapilheira de grama batatais (Paspalum notatum) e sabi? (Mimosa caesalpinifolia). As amostragens aconteceram aos 15, 30, 45 e 75 dias de incuba??o. O trato intestinal de cinco indiv?duos foi removido e seccionado o ter?o posterior tratado em ultrasom e estocado. Procedeu-se a extra??o de DNA da microbiota associada ao trato intestinal, serrapilheira e copr?lito, com an?lise por DGGE utilizando o gene 16S rDNA, DGGE para grupo actinomicetos e avalia??o da presen?a de genes nifH. A an?lise do gene 16s por DGGE revelou diversidade microbiana condicionada pela dieta oferecida at? os 45 dias. Ap?s este per?odo o efeito n?o foi mais vis?vel. A comunidade associada aos copr?litos e ao tipo de serrapilheira distribui-se em grupamentos separados das amostras oriundas do trato intestinal. O mesmo n?o foi observado na avalia??o da comunidade de actinomicetos, onde o grande diferencial para divis?o de grupos foi a dieta. Os animais alimentados com serrapilheira de grama mostraram uma comunidade diversa e n?o influenciada pelo tempo ou compartimentaliza??o. As amostras associadas ? serrapilheira e aos copr?litos foram 80% similares ?s do trato intestinal. Nos dipl?podes alimentados com sabi?, o resultado foi diferente, sendo as amostras de serrapilheira e copr?litos 50% similares ?s do trato intestinal. Todas as amostragens tiveram genes nifH detectados via PCR. Amostras coletadas aos 45 dias foram tamb?m inoculadas em meio mineral m?nimo de Busnell-Hass adicionado de carboxi-metil-celulose (CMC) como ?nica fonte de carbono. Os microrganismos isolados foram avaliados quanto ? capacidade de degrada??o de celulose e 15 apresentaram ?ndice enzim?tico maior que 1. O isolado com o maior ?ndice (3,65) foi alvo de outras an?lises. A visualiza??o em microsc?pio sugeriu que n?o se tratava de um isolado e sim de um complexo de microrganismos atuando na degrada??o da celulose. H? evidencias de FBN no trato intestinal do dipl?pode e microrganismos proliferados em meio CMC pela boa amplifica??o de genes nifH e prolifera??o em meio com aus?ncia de nitrog?nio. A comunidade de procariotos foi influenciada pela dieta oferecida at? os 45 dias e a comunidade de actinomicetos foi condicionada em fun??o da dieta. Foram isolados microrganismos e complexos de microrganismos com capacidade celulol?tica, com grande potencial para a busca de tecnologias ambientalmente sustent?veis na gera??o de agrobioenergia. 2017-06-05T14:54:01Z 2010-02-23 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis Passos, Samuel Ribeiro. Diversidade de microrganismos no trato intestinal e res?duos digestivos de Trigoniulus Corallinus (GERVAIS) (DIPLOPODA, SPIROBOLIDA, PACHYBOLIDAE).. 2010. [50 f.]. Disserta??o( PROGRAMA DE P?S-GRADUA??O EM AGRONOMIA E CI?NCIA DO SOLO) - Universidade Federal Rural do Rio de Janeiro, [Serop?dica - Rio de Janeiro] . https://tede.ufrrj.br/jspui/handle/jspui/1735 por ABE, T.; HIGASHI, M. Cellulose centered perspective on terrestrial community structure. Oikos, v. 60, p. 127-133, 1991 BALDANI, V.L.D. Efeito da inocula??o de Herbaspirillum spp. No processo de infec??o e coloniza??o de plantas de arroz e ocorr?ncia e caracteriza??o parcial de uma nova bact?ria diazotr?fica.1996, 238f, Tese. (Doutorado em Agronomia ? Ci?ncia do Solo) Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ. BARNES, R. D. Zoologia dos invertebrados. S?o Paulo: Roca, 1179 p, 1984. BREZNAK, J.A., BRUNE, A. Role of microorganisms in the digestion of celluloses by termites. Annual Review of Entomology, v. 39, p.453?487, 1994. BRUNE, A. & FRIEDRICH, M. Microecology of the termite gut: structure and function on a microscale. Current Opinion in Microbiology, v.3, p. 263?269, 2000. BRUNE, A. & STINGL, U. Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: (OVERMANN, J., ed.) Molecular Basis of Symbiosis, Springer, p. 39?60, 2005. BUDZIAK, C. R.; MAIA, C.; MANGRICH, A. S Chemical transformations of organic matter during the composting of wood industry wastes (residues). Quimica Nova , v. 27, p. 399-403, 2004. BYZOV, B. A.; KURAKOV, A. V.; TRETYAKOVA, E. B.; THANH, V. N.; LUU, N. D. T.; RABINOVICH, Y. M. Principles of the digestion of microorganisms in the gut of soil millipedes: specificity and possible mechanisms. Applied Soil Ecology v. 9, p. 145-151, 1998. BYZOV, B. A.; THANH, V. N.; BABJEVA, I. P. Interrelationships between yeasts and soil diplopods. Soil Biology & Biochemistry, v. 25, p. 1119-1126, 1993. BYZOV, B. A.; CLAUS, H.; TRETYAKOVA, E. B.; ZVYAGINTSEV, D. G.; FILIP, Z. Effects of soil invertebrates on the survival of some genetically engineered bacteria in leaf litter and soil. Biology and Fertility of Soils, v.23, p.221-228, 1996. CARLTON, J.M.; HIRT, R.P.; SILVA, J.C.; DELCHER, A.L.; SCHATZ, M.; ZHAO, Q.; WORTMAN, J.R.; BIDWELL, S.L.; ALSMARK, U.C.; BESTEIRO, S.; SICHERITZ-PONTEN, T.; NOEL, C.J.; DACKS, J.B.; FOSTER, P.G.; SIMILLION, C.; VAN DE PEER Y.; .; MIRANDASAAVEDRA D.; BARTON GJ.; WESTROP GD.; M?LLER S.; DESSI D.; FIORI PL.; REN Q.; PAULSEN I.; ZHANG H.; BASTIDA-CORCUERA FD.; SIMOES-BARBOSA A.; BROWN MT.; HAYES RD.; MUKHERJEE M.; OKUMURA CY.; SCHNEIDER R.; SMITH AJ.; VANACOVA S.; VILLALVAZO M.; HAAS BJ.; PERTEA M.; FELDBLYUM TV.; UTTERBACK TR.; SHU CL.; OSOEGAWA K.; DE JONG PJ.; HRDY I.; HORVATHOVA L.; ZUBACOVA Z.; DOLEZAL P.; MALIK SB.; LOGSDON JM JR.; HENZE K.; GUPTA A.; WANG CC.; DUNNE RL.; UPCROFT JA.; UPCROFT P.; WHITE O.; SALZBERG SL.; TANG P.; CHIU CH.; LEE YS.; EMBLEY TM.; COOMBS GH.; MOTTRAM JC.; TACHEZY J.; FRASER-LIGGETT CM.; JOHNSON PJ..Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, v.315, p.207?212, 2007. CARLE-URIOSTE, J. C., J. ESCOBAR-VERA, S. EL-GOGARY, F. HENRIQUE-SILVA, E. TORIGOI, O. CRIVELLARO, A. HERRERA-ESTRELLA, AND H. EL-DORRY. Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. The Journal of Biological Chemistry, v. 272, p.10169?10174, 1997.39 CAZEMIER, A. E.; HACKSTEIN, J. H. P.; DENCAMP, H.; ROSENBERG, J.; VANDERDRIFT, C. Bacteria in the intestinal tract of different species of arthropods. Microbial Ecology, v.33, p.189-197, 1997. CHU, T. L., SZABO, I. M., SZABO, I. Nocardioform gut actinomycetes of Glomeris hexasticha Brandt (Diplopoda). Biology and Fertility of Soils, v. 3, p. 113-116, 1987. CORREIA, M. E. F. Distribui??o, prefer?ncia alimentar e transforma??o de serrapilheira por dipl?podes em sistemas florestais. 2003. Tese (Doutorado em Agronomia ? Ci?ncia do Solo) ? Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ. CORREIA, M. E. F., AQUINO, A. M. de. Os Dipl?podes e suas associa??es com microrganismos na ciclagem de nutrientes. Documentos, Embrapa Agrobiologia, v.199, 41p, 2005. CORREIA, M. E. F., PASSOS, S. R., SOARES, L. H. B., ARAUJO, J. L. S., MARTINS, C.M.M., XAVIER, G. R., RUMJANEK N.G. Ecologia da intera??o entre fauna de solo e microrganismos no processo de decomposi??o de res?duos vegetais. XXXII Congresso Brasileiro de Ci?ncia do Solo, Fortaleza, 2009. DAMMAN,C.J., SURAWICZ, C.M. The Gut Microbiota: A Microbial arsenal protecting us from infectious and radiation-induced diarrhea. Gastroenterology, v.136, p. 722-724, 2009. EADY, R.R.; ROBSON, R.L.; SMITH, B.E. Alternative and convencional nitrogenase. In: COLE, J.A.; FERGUSON, S., The nitrogen and sulfur cycles. Cambridge: Cambridge University, p.363-382, 1988. EDENBORN, S. L.; SEXSTONE, A. J. DGGE fingerprinting of culturable soil bacterial communities complements culture-independent analyses. Soil Biology and Biochemistry, v. 39, p. 1570?1579, 2007 GRAY, K.A.; ZHAO, L.; EMPTAGE, M. Bioethanol. Current Opinion Chemical Biology, v. 10, p.1?6, 2006. GUERRA, J.G.M., SANTOS, G.A. M?todos qu?micos e f?sicos. In: SANTOS, G.A.; SILVA, L.S.; CANELLAS, L.P.; CAMARGO, F.A.O. Eds. Fundamentos da Mat?ria Org?nica do Solo: Ecossistemas Tropicais e Subtropicais. Porto Alegre, Metr?pole, 2008, p 185-198. HAHN-H?GERDALA, B.; GALBEA, M.; GORWA-GRAUSLUNDA, M.F.; LID?NA, G.; ZACCHI, G. Bio-ethanol ? the fuel of tomorrow from the residues of today. TRENDS in Biotechnology, v. 24, p. 549-556, 2006. HANKIN, L.; ANAGNOSTAKIS, S.L. The use of solid media for detection of enzymes production by fungi. Mycologia, v. 67, p. 597-607, 1975. HIMMEL, M. E.; DING, S.Y.; JOHNSON, D.K.; ADNEY, W.S.; NIMLOS, M.R.; BRADY, J.E.; FOUST,T.D. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, v.315, p.804?7, 2007. HUGENHOLTZ, P.; GOEBEL B. M.; PACE, N. R. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. The Journal of Bacteriology, v.180, p. 4765?4774, 1998. HONGOH, Y.; SHARMA, V. K.; PRAKASH, T.; NODA, S.; TOH, H.; TAYLOR, T.D.; KUDO, T.; SAKAKI, Y.; TOYODA, A.; HATTORI, M.; OHKUMA, M. Genome of an endosymbiont coupling N-2 fixation to cellulolysis within protist cells in termite gut. Science, v.322, p.1108-1109, 2008.40 HUNGATE R.E. Studies on cellulose fermentation II. An anaerobic cellulose-decomposing actinomycete, Micromonospora propionici, N. Sp. Journal Bacteriology. v. 51, p.51?56, 1946. JANSSEN, P.H., YATES, P.S., GRINTON, B.E., TAYLOR, P.M., SAIT, M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology 68, p.2391?2396, 2002. KENNEDY, A. C. Bacterial diversity in agroecosystems. Agriculture, Ecosystems and Environment, v. 74, p. 65-76, 1999. KNAPP, B. A.; PODMIRSEG, S. M.; SEEBER, J.; MEYER, E.; INSAM, H Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biology & Biochemistry, v. 41, p. 2299-2307, 2009(a) KNAPP, B. A.; SEEBER, J.; PODMIRSEG, S.M.; RIEF, A.; MEYER, E.; INSAM, H. Molecular fingerprinting analysis of the gut microbiota of Cylindroiulus fulviceps (Diplopoda). Pedobiologia, v. 52, p. 325-336, 2009(b) KUKOLYA, J.; NAGY, I.; LADAY, M.; TOTH, E.; ORAVECZ, O.; MARIALIGETI, K.; HORNOK, L. Thermobifida cellulolytica sp nov., a novel lignocellulose-decomposing actinomycete. International Journal of Systematic and Evolutionary Microbiology. V.52, p.1193-1199, 2002. K?HLER, H. R.; ALBERTI, G. Morphology of the mandibles in the millipedes (Diplopoda, Arthropoda). Zoologica Scripta, v. 19, p.195-202, 1990. K?HLER, H. R.; ALBERTI, G.; STORCH, V. The influence of mandibles of Diplopoda on the food ? a dependence of fine structure and assimilation efficiency. Pedobiologia, v. 35, p. 108-116, 1991. LAVELLE P., BIGNELL D., LEPAGE M., WOLTERS V., ROGER P., INESON P., HEAL O.W. AND DHILLION S. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, v.33, p.159?193, 1997. LEAL, M.A.A. Produ??o e efici?ncia agron?mica de compostos obtidos com palhada de gram?nea e leguminosa para o cultivo de hortali?as org?nicas. 2006. 133p. Tese (Doutorado) ? Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ. LEFEBVRE, T.; MIAMBI, E.; PANDO, A.; DIOUF, M.; ROULAND-LEFEVRE, C. Gutspecific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insectes Sociaux, v. 56, p. 269-276, 2009. LILBURN, T. G.; KIM, K. S.; OSTROM, N. E.; BYZEK, K. R.; LEADBETTER, J. R.; BREZNAK J. A. Nitrogen fixation by symbiotic and free-living spirochetes. Science, v. 292, p. 2495-2498, 2001 LYND, L.R.; WEIMER, P.J.; VAN ZYL, W.H.; PRETORIUS, I.S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, v. 66, p. 506?577, 2002. MARTIN, A.; MARINISSEN, J. C. Y. Biological and chemical processes in excrements of soil animals. Geoderma, v. 56, p. 331-347, 1993.41 MATSUI, H.; KATO, Y.; CHIKARAISHI, T.; MORITANI, M.; BAN-TOKUDA, T.; WAKITA, M. Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library. Anaerobe, 2009 (doi:10.1016/j.anaerobe.2009.07.005, on-line) MCBRAYER, J.F. Exploitation of deciduous leaf litter by Apheloria ax oce Diplopoda: Eurydesmida). Pedobiologia, v. 13, p. 90-98, 1973. MEN?KO, E. V., CHERNOV, I. YU., BYZOV B. A. Interrelationships between yeast fungi and collembolans in soil. Microbiology, Vol. 75, No. 6, p. 708?715, 2006. MICHELLAND, R. J.; MONTEILS, V.; ZENED, A.; COMBES, S.; CAUQUIL, L.; GIDENNE, T.; HAMELIN, J.; FORTUN-LAMOTHE, L. Spatial and temporal variations of the bacterial community in the bovine digestive tract. Journal of Applied Microbiology, v. 107, p. 1642-1650, 2009. MIELNICZUK, J. Mat?ria org?nica e a sustentabilidade de sistemas agr?colas: In: SANTOS, G.A.; SILVA, L.S.; CANELAS, L.P.; CAMARGO, F.A.O. (eds) Fundamentos da Mat?ria Org?nica do Solo: Ecossistemas tropicais e Subtropicais. Porto Alegre, Metr?pole, 2008, p 1- 5. MILLING, A.; SMALLA, K.; MAIDL, F.X.; SCHLOTER, M.; MUNCH, J.C.; Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant and Soil, v.266, p.23-39, 2004. MUYZER, G.; DE WAAL, E.C.; UITTERLINDEN, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Applied and Environmental Microbiology, v.59, p.695?700, 1993. O?BRIEN, R. W.; SLAYTOR, M. Role of microorganisms in the metabolism of termites. Australian Journal Biology Science, v. 35, p.239?262,1982. ?VRE?S, L.; TORSVIK, V. Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, v. 36, p.303?315, 1998. PASSOS, S. R.; REIS JUNIOR, F. B.; RUMJANEK, N. G.; MENDES, I.C.; BAPTISTA, M.J.; XAVIER, G.R., Atividade enzim?tica e perfil da comunidade bacteriana em solo submetido ? solariza??o e biofumiga??o. Pesquisa Agropecu?ria Brasileira, v.43, p.879-885, 2008. POLY, F.; MONROZIER, L.J.; BALLY, R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Resource Microbiology, v.152, p.95?103, 2001 PALLERONI, N. J. Introduction to the family Pseudomonadaceae. In: STARR, M. P.; Stolp, H.; TR?PER, H.G.; BALOWS, A.; SCHLEGEL, H. G. (ed.), The prokaryotes: a handbook on habitats, isolation, and identification of bacteria, vol. I. Springer-Verlag, New York, N.Y. 1981, p 655-665. RAMACHANDRA, M.; CRAWFORD, D.; HERTEL, G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Applied Environmental.Microbiology, v.5, p.3057-306, 1988. RAOULT, D. Probiotics and obesity: a link? Nature Reviews Microbiology, v. 7, p. 616-616, 2009.42 RUEGGER, M.J.S; TAUK-TORNISIELO, S.M. Atividade da celulase de fungos isolados do solo da Esta??o Ecol?gica de Jur?ia-Itatins, S?o Paulo, Brasil. Revista Brasileira de Bot?nica, v.27, n.2, p.205-211, 2004. SALEH-RASTIN, N.; PETERSEN, M.; COLEMAN, S.; HUBBELL, D. Rapid plate assay for hydrolytic enzymes of Rhizobium. In: KEISTER, D.; CREGON, P.B. (eds). The Rhizosphere and Plant Growth, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991, p 188. SCHWIEGER, F.; TEBBE, C.C. A new approach to utilize PCR?single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology, v.64, p. 4870?4876, 1998. SEKIROV, I.; TAM, N.M.; JOGOVA, M. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infection and Immunity, v.76, p.4726? 4736, 2008. SU, Y.; YAO, W.; PEREZ-GUTIERREZ, O. N.; SMIDT, H.; ZHU, W.Y. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Anaerobe, v. 14, p. 78-86, 2008. SWIFT, M. J.; HEAL, O. W.; ANDERSON, J. M. Decomposition in terrestrial ecosystems. Oxford: Blackwell, v. 5. 372 p. 1979. STRIGANOVA, B. R. Changes in structure and biodiversity of soil fauna on forest-steppe catena in central Russia. Izvestiya Akademii Nauk Seriya Biologicheskaya, v.2, p.191-208, 1995. TEIXEIRA, K.R. dos S. Bases moleculares e gen?tica da fixa??o de nitrog?nio. Serop?dica: Embrapa-CNPAB, 1997. 26p. (Embrapa-CNPAB. Documentos, 32). THEENHAUS, A. E S. SCHEU. Successional changes in microbial biomass, activity and nutrient status in faecal material of the slug Arion rufus (gastropoda) deposited after feeding on different plant materials. Soil Biology & Biochemistry, v.28, n.4-5, p.569-577. 1996. THOMPSON, F.L.; OLIVEIRA, V.M.; AZEVEDO, J.L.; ARA?JO,W.L.; IN?CIO, C.A.; SELEGHIM, M.H.R.; KITAJIMA, E.W. Taxonomia: microbiana, de procariontes, de fungos, de protozo?rios e de v?rus: CGEE, 2005. 53p. TOKUDA, G.; WATANABE, H. Hidden cellulases in termites: revision of an old hypothesis. Biology Letters, v.3, p.336-339. 2007. TOUTAIN, F. Les liti?res: si?ge de syst?mes interactifs et moteur de ce interac-tions. Revue du ?cologie et Biologie du Sol, Paris, v.24, p.231-242, 1987 VON WINTZINGERODE F., GO?BEL U.B. AND STACKEBRANDT E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, v.21, p.213?219, 1997. WARD, D.M.; BATESON, M.M.; WELLER, R.; RUFFROBERTS, A.L. Ribosomal-RNA analysis of microorganisms as they occur in nature. Advances in Microbial Ecology, v.12, p.219-286, 1992. WARNECKE, F.; LUGINBUHL, P.; IVANOVA, N.; GHASSEMIAN, M.; RICHARDSON, T. H.; STEGE, J. T.; CAYOUETTE, M.; MCHARDY, A. C.; DJORDJEVIC, G.; ABOUSHADI, N.; SOREK, R.; TRINGE, S. G.; PODAR, M.; MARTIN, H.G.; KUNIN, V.; DALEVI, D.; MADEJSKA, J.; KIRTON, E.; PLATT, D.; SZETO, E.; SALAMOV, A.; BARRY, K.; MIKHAILOVA, N.; KYRPIDES, N. C.; MATSON, ERIC G.OTTESEN, E. A.; ZHANG, X.; HERNANDEZ, M.; MURILLO, C.; ACOSTA, L. G.; RIGOUTSOS, I.;43 TAMAYO, G.; GREEN, B. D.; CHANG, C.; RUBIN, E. M.; MATHUR, E. J.; ROBERTSON, D. E.; HUGENHOLTZ, P.; LEADBETTER, J. R.; Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, v.450, p.560-U17. 2007 WILKIE, K.C.B. Hemicellulose. Chemtech, v. 13, p. 306-319, 1983. XAVIER, G. R.; SILVA, F. V.; ZILLI, J. E.; RUMJANEK, N. G. Adapta??o de m?todo para extra??o de DNA de Microrganismos Associados a Ra?zes de Plantas. Serop?dica: Embrapa Agrobiologia, 2004. 24 p. (Embrapa Agrobiologia. Documentos, 171). XU, F. Enhancing biomass conversion to fermentable sugars: a progress report of a joint government-industrial project. In: OHMIYA, K.; SAKKA, K.; KARITA, S.; KIMURA, T.; SAKKA, M.; ONISHI, Y. editors. Biotechnology of ligninocellulose degradation and biomass utilization. Tokyo: Uni Publishers, 2004. p. 793?804. ZANI, S.; MELLON, M.T.; COLLIER, J.L.; ZEHR, J.P. Expression of nifH genes in natural microbial assemblages in Lake George, New York detected with RT-PCR. Applied and Environmental Microbiology, v.66, p.3119?3124, 2000. ZILLI, J. ?.; BOTELHO, G. R.; NEVES, M. C. P.; RUMJANEK, N. G. Efeito de glyphosate e imazaquin na comunidade bacteriana do rizoplano de soja (Glycine max (L.) Merrill) e em caracter?sticas microbiol?gicas do solo. Revista Brasileira de Ci?ncia do Solo, v.32, p. 633- 642, 2008. ZILLI, J.E.; SANTOS, E.L; HAGLER, L.M.; NEVES, M.C.P.; RUMJANEK, N.G. Desenvolvimento de meio de cultivo para microrganismos do solo utilizando solo como fonte de nutrientes. In: CONGRESSO BRASILEIRO DE MICROBIOLOGIA, 22, 2003, Florian?polis. Resumos. Florian?polis, SC: Sociedade Brasileira de Microbiologia, 2003. info:eu-repo/semantics/openAccess application/pdf Universidade Federal Rural do Rio de Janeiro Programa de P?s-Gradua??o em Agronomia e Ci?ncia do Solo UFRRJ Brasil Instituto de Agronomia reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro instacron:UFRRJ